FAIRCHILD

SEMICONDபСTOR ${ }_{\text {тм }}$

FDD6035AL

N-Channel, Logic Level, PowerTrench ${ }^{\circledR}$ MOSFET

General Description

This N-Channel Logic level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on state resistance and yet maintain low gate charge for superior switching performance.

Applications

- DC/DC converter
- Motor drives

Features

- $46 \mathrm{~A}, 30 \mathrm{~V} . \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.0125 \Omega @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.016 \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} .
$$

- Low gate charge (17nC typical).
- Fast switching speed.
- High performance trench technology for extremely low $\mathrm{R}_{\text {DS(ON) }}$.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$V_{\text {DSS }}$	Drain-Source Voltage	30	V
$\mathrm{V}_{\text {GSS }}$	Gate-Source Voltage	± 20	V
I_{D}	Drain Current - Continuous	46	A
		12	
	Drain Current - Pulsed	100	
P_{D}	Maximum Power Dissipation @ T_{C} $=25^{\circ} \mathrm{C}$ (Note 1) T_{A} $=25^{\circ} \mathrm{C}$ (Note 1a) T_{A} $=25^{\circ} \mathrm{C}$ (Note 1b)	50	W
		2.8	
		1.3	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta^{J C}}$	Thermal Resistance, Junction-to-Case	(Note 1a)	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta^{J A}}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD6035AL	FDD6035AL	$13^{\prime \prime}$	16 mm	2500

Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Svmbol	Parameter	Test Conditions	Min	Typ	Max	Units

Drain-Source Avalanche Ratings (Note 1)

$\mathrm{W}_{\mathrm{DSS}}$	Single Pulse Drain-Source Avalanche Energy	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$			180
$\mathrm{I}_{\text {AR }}$	Maximum Drain-Source Avalanche Current			12	mJ

Off Characteristics

BV ${ }_{\text {DSs }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	30			V
Δ BVoss $\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{\mathrm{D}}=250 \mu \mathrm{~A}, \text { Referenced to } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		25		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {GSSF }}$	Gate-Body Leakage Current, Forward	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			100	nA
$\mathrm{I}_{\text {GSSR }}$	Gate-Body Leakage Current, Reverse	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-100	nA

On Characteristics (Note 2)

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	1.6	3	V
$\Delta \mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to		-4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{J}$	Temperature Coefficient	$25^{\circ} \mathrm{C}$				
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain-Source	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$.0009	0.0125	Ω
	On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12$.0015	0.019	
		$\mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$.0120	0.016		
$\mathrm{I}_{\mathrm{D}(\text { on })}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$				
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=5 \mathrm{~V}$	50			A

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	1700	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		340	p
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		140	p

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	10	18	ns
t_{r}	Turn-On Rise Time		12	22	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		35	56	ns
t_{f}	Turn-Off Fall Time		10	18	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \end{aligned}$	17	23	nC
Q_{gs}	Gate-Source Charge		5		nC
Q_{gd}	Gate-Drain Charge		6		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_{S}	Maximum Continuous Drain-Source Diode Forward Current			2.3	A	
$\mathrm{~V}_{\mathrm{SD}}$	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2.3 \mathrm{~A}($ Note 2)		0.72	1.3	V

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the drain tab.
$R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

Scale 1: 1 on letter size paper
2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics (continued)

Figure 7. Gate-Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1b
Transient themal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FAST ©	OPTOLOGICTM	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
Bottomless ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {TM }}$	STAR*POWER ${ }^{\text {TM }}$	
CoolFET ${ }^{\text {TM }}$	FRFET ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	
CROSSVOLT ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	POP ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	
DenseTrench ${ }^{\text {TM }}$	GTOTM	Power247 ${ }^{\text {TM }}$	SuperSOTTM-6	
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {¹ }}$	PowerTrench ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	
EcoSPARK ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	LittleFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {™ }}$	
EnSigna ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$	
FACTM	MicroPak ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENTSWITCHER ${ }^{\circledR}$	UltraFET ${ }^{\text {® }}$	
STAR*POWER is used under license				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

