SIEMENS

Intelligent Sixfold Low-Side Switch

Features

- Double low-side switch, $2 \times 0.5 \mathrm{~A}$
- Quad low-side switch, $4 \times 50 \mathrm{~mA}$
- Power limitation
- Open-collector outputs
- Overtemperature shutdown
- Status monitoring
- Shorted-load protection
- Integrated clamp Z-Diodes

- Temperature range -40 to $110^{\circ} \mathrm{C}$

Type	Ordering Code	Package
TLE 4216 G	Q67000-A9108	P-DSO-24-3 (SMD)

TLE 4216 G is an integrated, sixfold low-side power switch with power limiting of the 0.5 A outputs, shorted load protection of the 50 mA switches and Z-diodes on all switches from output to ground. TLE 4216 G is particularly suitable for automotive and industrial applications.

Pin Configuration
(top view)

TLE 4216 G

AEP01079

Pin Definitions and Functions

TLE 4216 G	Symbol	Function
Pin No.		
$1,2,3,4$	I1, I2, I3, I4	Inputs of 50-mA switches 1, 2, 3, 4
$5,6,7,8$	GND	Ground, cooling
9,10	I5, I6	Inputs of 0.5 A switches 5, 6
11	$V_{\text {REF }}$	Status analog output
12	PREFST	Reference voltage; a higher reference voltage than the internal one can be applied from the exterior as a voltage reference for the status output (A/D converter).
13	Preferred state (low = preferred state of all outputs regardless of inputs)	
14	Q6, Q5	Outputs 6, 5 (0.5 A), open collector
15,16	GND	Ground, cooling
$17,18,19,20$	Q4, Q3, $21,22,23,24$	Outputs 4, 3, 2, 1 (50 mA), open collector

Block Diagram

Circuit Description

Input Circuits

The control inputs and the preferred-state input consist of TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the buffer amplifiers convert the logic signal necessary for driving the NPN power transistors.

Switching Stages

The output stages consist of NPN power transistors with open collectors. Each stage has its own protective circuit for limiting power dissipation and shorted-load current, which makes the outputs shorted-load protected to the supply voltage throughout the operating range. Integrated Z-diodes limit positive voltage spikes that occur when inductive loads are discharged.

Monitoring and Protective Functions

Each output is monitored in its activated status for overload. Furthermore, large parts of the circuitry are shutdown (control, output stages). The information from these malfunctions is ORed and applied to the status output. If several malfunctions appear simultaneously, the highest voltage level will dominate. The IC is also protected against thermal overload. If a chip temperature of typically $160^{\circ} \mathrm{C}$ is reached, overtemperature is signalled on the status output. If the temperature continues to increase, all outputs are turned off at $170^{\circ} \mathrm{C}$.
If the minimum supply voltage for functioning is not maintained, the output stages become inactive. At a supply voltage of 2 to 4 V , the outputs are switched to a preferred state regardless of the level on pin PREFST. If the preferred state is to be maintained beyond this range, pin PREFST must be switched to low potential. Above a supply voltage of typical 3 V (max. 4 V) the preferred state is controlled by pin PREFST. From 4 to 5.2 V the logic operation of the outputs is guaranteed, but the status output cannot be evaluated. At a supply voltage of 5.2 to 30 V the full function is guaranteed.

Application Description

Applications in automotive electronics require intelligent power switches activated by logic signals, which are shorted-load protected and provide error feedback.
The IC contains six power switches connected to ground (low-side switch). On inductive loads the integrated Z-diodes clamp the discharging voltage.
By means of TTL signals on the control inputs (active high) all six switches can be activated independently of another when a high level appears on the preferred-state input. When there is a low level on the preferred-state input, switches 1 to 4 are switched on, switches 5 and 6 are switched off regardless of the input level. The inputs are highly resistive and therefore must not be left unconnected, but should always be on fixed potential (noise immunity).
The status output signals the following malfunctions by analog voltage levels:

- Overload
- Overtemperature

Possible Input and Output Levels

Supply Voltage $\boldsymbol{V}_{\mathbf{s}}$	PREFST	I1... I6	Q1 ... Q4	Q5, Q6
2 to 4 V	L	X	L	H
4 to 30 V	H	L	H	H
4 to 30 V	H	H	L	L

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	$V_{\text {S }}$	-1	40	V	
Supply voltage, load circuit	$V_{\text {Q1-6 }}$	-0.7	25	V	
Input voltage	V_{11-6}, $V_{\text {PREFST }}$	0	V_{S}	V	
Input voltage	$V_{\text {REF ext }}$	-0.7	7	V	
Currents					
Switching current	$I_{\text {Q1 }}-I_{\text {Q } 6}$				limited internally
Current on reverse poling in load circuit	$I_{\text {Q5, Q6 }}$	-0.5		A	
Current on reverse poling in load circuit	$I_{\text {Q1-Q4 }}$	-50		mA	
Output current positive clamp	$I_{\text {Z5-Z6 }}$		0.7	A	
Output current positive clamp	$I_{\text {Z1-Z4 }}$		70	mA	
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	Thermal overload shutdown at $170^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	5.2	30	V	$V_{\mathrm{REF}} \leq V_{\mathrm{S}}$, functioning is guaranteed at $V_{\mathrm{S}}=4-5.2 \mathrm{~V}$ but status output cannot be evaluated.
Supply voltage in load circuit	$V_{\mathrm{Q1-6}}$	-0.3	24	V	
Ambient temperature	T_{A}	-40	110	${ }^{\circ} \mathrm{C}$	
Supply voltage for load short-circuit	V_{S}		16	V	
Input current (high)	I_{IH}		100	$\mu \mathrm{~A}$	
Thermal resistance Junction-ambient	$R_{\mathrm{th} \mathrm{JA}}$		65	$\mathrm{~K} / \mathrm{W}$	$\mathrm{P}-\mathrm{DSO}-24-3$

Characteristics

$V_{\mathrm{S}}=5$ to $12 \mathrm{~V} ; T_{\mathrm{j}}=-25$ to $140^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General

Supply current	I_{S}		50	70	mA	$V_{\mathrm{I}}>V_{\mathrm{IH}} ; V_{\mathrm{IP}}>V_{\mathrm{IH}}$
Supply current	I_{S}		36	50	mA	$V_{\mathrm{I}}>V_{\mathrm{IH}} ; V_{\mathrm{IP}}>V_{\mathrm{IH}} ;$ Quiescent current
	I_{S}		8	11	mA	$V_{\mathrm{S}}=5 \mathrm{~V}$ $V_{\mathrm{I}}<V_{\mathrm{IL}} ; V_{\mathrm{IP}}>V_{\mathrm{IH}}$

Logic (Control inputs + preferred state)

H-switching threshold	V_{IH}	1.3	1.8	2.1	V	
L-switching threshold	V_{IL}	0.9	1.2	1.5	V	
Hysteresis	ΔV_{I}	0.3	0.6	1.0	V	
Input current						
Input current	I_{I}	-2		2	$\mu \mathrm{~A}$	$0.9 \mathrm{~V}<V_{\mathrm{I}}<6 \mathrm{~V}$
L-input current	$-I_{\mathrm{IL}}$	0		20	$\mu \mathrm{~A}$	$0.5 \mathrm{~V}<V_{\mathrm{I}}<0.9 \mathrm{~V}$

Switching Stages

Load current	$I_{\text {Q1-Q4 }}$	50			mA	$\begin{aligned} & V_{\mathrm{S}}=2 \mathrm{~V} \\ & \text { (preferred state) } \end{aligned}$
Saturation voltage	$V_{\text {QSat } 5,6}$		0.5	0.8	V	$I_{\mathrm{Q}}=0.4 \mathrm{~A} ; V_{1}>V_{1 \mathrm{H}}$
Saturation voltage	$V_{\text {QSat 1-4 }}$		0.4	0.6	V	$I_{\mathrm{Q}}=50 \mathrm{~mA} ; V_{1}>V_{\mathrm{IH}}$
Saturation voltage	$V_{\text {QSat 1-4 }}$			0.22	V	$I_{\mathrm{Q}}=20 \mathrm{~mA} ; V_{1}>V_{\mathrm{IH}}$
Turn-ON time	$t_{\text {D-ON }}$	0.2	1	1.5	$\mu \mathrm{s}$	see Diagrams
Turn-OFF time	$t_{\text {D-OFF }}$	0.2	1	1.5	$\mu \mathrm{s}$	see Diagrams; $I_{\mathrm{L}}=I_{\text {max }}$

Characteristics (cont'd)
$V_{\mathrm{S}}=5$ to $12 \mathrm{~V} ; T_{\mathrm{j}}=-25$ to $140^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Temperature Protection

Overtemperature (signaled on status output)			160		${ }^{\circ} \mathrm{C}$	
Overtemperature (outputs shut down)			170		${ }^{\circ} \mathrm{C}$	

Outputs

Output voltage pos. clamp	$V_{\text {Q1-4 }}$	25.5	33	V	$I=50 \mathrm{~mA}$
Output voltage pos. clamp	$V_{\text {Q5-6 }}$	25.5	35	V	$I=0.5 \mathrm{~A}$
Shorted-load current	$I_{\text {Q1max- }}$	50	120	mA	$V_{Q}<16 \mathrm{~V}$
Leakage current	$\begin{aligned} & \mathrm{Q} 4 \max \\ & I_{\mathrm{Q} 1-4} \end{aligned}$		200	nA	$\begin{aligned} & V_{\mathrm{Q}}=24 \mathrm{~V} ; \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$
Leakage current Shorted-load current	$I_{\text {Q5;6 }}$		300	$\mu \mathrm{A}$	$V_{Q}=24 \mathrm{~V}$
Shorted-load current	$I_{\text {Q5max }}$ Q6max				see Diagrams
Status output					
No error	$V_{\text {st }}$		0.5	V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$
Overload output 6	$V_{\text {st }}$	1.0	1.3	V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$
Overload output 5	$V_{\text {st }}$	1.4	1.7	V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$
Overload output 4	$V_{\text {st }}$	1.8	2.1	V	$V_{\text {REF }}=5 \mathrm{~V}^{11}$
Overload output 3	$V_{\text {st }}$	2.2	2.5	V	$V_{\text {REF }}=5 \mathrm{~V}^{11}$
Overload output 2	$V_{\text {st }}$	2.6	2.9	V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$
Overload output 1	$V_{\text {st }}$	3.0	3.3	V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$
Overtemperature	$V_{\text {st }}$	3.5		V	$V_{\text {REF }}=5 \mathrm{~V}^{1)}$

[^0]Characteristics (cont'd)
$V_{\mathrm{S}}=5$ to $12 \mathrm{~V} ; T_{\mathrm{j}}=-25$ to $140^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Source resistance of status output	R_{QSt}	100		550	Ω	
Delay time of status	t_{dst}			10	$\mu \mathrm{~s}$	Shorted load
Reference voltage (internal)	V_{REF}		2.5		V	
Input resistance of reference pin	$R_{\mathrm{REF} \text { in }}$	7	10	14.5	$\mathrm{k} \Omega$	$V_{\mathrm{REF}}=2.8 \mathrm{~V} \ldots 6.5 \mathrm{~V}$

Test Circuit

S1 in position 1: all switches can be activated by S2 (position 1) or deactivated (position 2)
S1 in position 2: preferred state

Application Circuit

*) The capacitance depends on the inductance and current load of the supply.

Diagrams

Permissible Load Inductance versus Load Current

Short-Circuit Current I_{OO} versus Output Voltage V_{Q} (0.5 A outputs)

When switching the maximum inductive loads, the maximum temperature T_{j} of $150^{\circ} \mathrm{C}$ may be briefly exceeded. The IC will not be destroyed by this, but the restrictions concerning useful life should be observed.

[^0]: ${ }^{1)}$ The limits shift proportionally for a higher value of reference voltage.

