

Powerlink Microelectronics

PL3536

高精度恒压/恒流、原边控制 PWM功率开关

芯片概述:

PL3536 是一款高效率、高集成度、原边调节的 PWM 功率 开关,其主要应用于小于 15W 的 AC/DC 反激式开关电源。PL3536 通过去除光耦以及次级控制电路,简化了充电器/适配器等传统的恒流/恒压的设计,从而实现高精度的电压和电流调节,调节波形如下图 1 所示。

PL3536 的复合模式的应用使得芯片能够实现低静态功耗、低音频噪音、高效率。内置的频率抖动可以很好的降低芯片的 EMI 以及 EMI 滤波成本,而且高集成的功率 MOSFET 能够降低外部 PCB 的面积以及系统的成本。

PL3536 同时具有多种保护功能:逐周期峰值电流检测、欠压保护、过压保护、VDD 钳位、过载保护等。

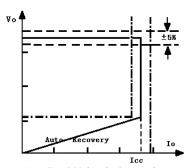



图 1 典型的恒流/恒压波形

管脚分布图:

主要特点:

- 内置高集成度的功率MOSFET
- +/-5%恒压调节
- 全电压范围内实现高精度电流调节
- 去除光耦和次级控制电路
- 内置高精度恒流调节的线电压补偿
- 内置变压器电感补偿
- 可编程的输出线补偿
- 内置可提高效率的自适应多模式 PWM/PFM控制
- 低启动电流
- 内置软启动
- 内置前沿消隐
- 逐周期电流限制
- 欠压保护
- 内置短路保护以及输出过压保护

应用:

- 手机/无绳电话充电器
- 数码相机充电器
- 小功率电源适配器
- LED驱动
- 消费类的备用电源

1 概要

PL3536是款恒流/恒压原边控制的高性能离线反激式开关电源,其外部仅需少量元件。其内部集成了包括功率MOSFET以及原边控制模块等高压功率调节器。

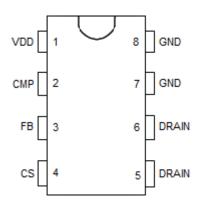
PL3536适用于小于15W的AC/DC应用场合。其无需 光耦以及次级控制电路就能实现高精度的恒流/ 恒压功能。系统稳态时也无需额外的补偿电路, 从而能够得到精准的电压/电流控制。

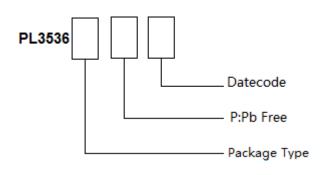
与传统的次级调节方式相比,PL3536能够降低系统元器件数量,PCB面积以及整个系统成本,且可以提高系统的效率及稳定性。

PL3536复合模式的应用使得芯片能够实现低静态功耗、低音频噪音、高效率。在恒流模式以及系统重载下,芯片会工作在PFM模式,系统正常时,PL3536工作在PWM模式。这种绿色模式会大大提高系统的效率,同时能够节省能耗。

PL3536 具有多种保护功能以应对系统的各种异常状态。主要包括:限流保护、欠压保护、过压保护、VDD 钳位等。系统发生异常时,芯片将被保护,直到系统恢复正常状态。

PL3536提供DIP8封装。


2 特性


- 内置高集成度的功率MOSFET
- +/-5%恒压调节
- 全电压范围内精准的恒流调节
- 去除光耦和次级恒流恒压控制电路
- 内置高精度恒流调节的线电压补偿
- 内置变压器电感补偿
- 可编程的输出线补偿
- 内置可提高效率的自适应多模式PWM/PFM控制

- 低启动电流
- 内置软启动
- 内置短路保护
- 内置前沿消隐
- 过流保护
- 过压保护
- VDD钳位保护
- 欠压保护
- 过载保护

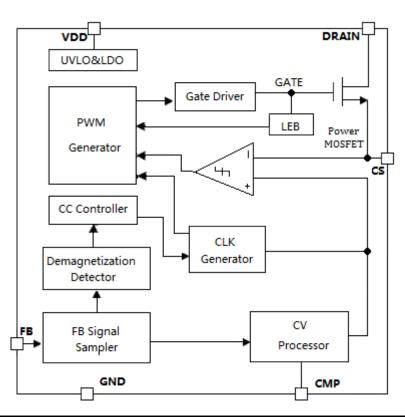
3 管脚分布图

DIP-8的管脚图如下图所示:

4 管脚描述

管脚名	描述
VDD	芯片电源输入
CMP	误差放大器输出,用于环路补偿
FB	通过电阻分压连接到辅助绕组,该管脚用于检测输出信号并调节芯片的恒流/恒压
CS	通过检测连接CS到地电阻的电压来反映原边电感电流
DRAIN	高压MOSFET的漏端,连接到变压器
GND	芯片地

5 最大额定值

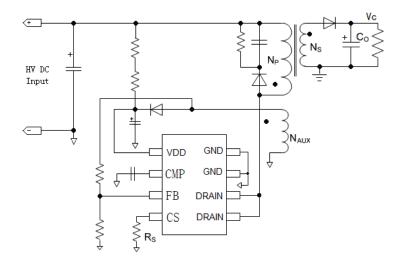

参数	符号	范围	单位
VDD 电压(1 脚)	VDD	-0.3到VDDc1amp	V
CMP 输入(2 脚)	CMP	-0.3 到 7	V
CS 输入(4 脚)	CS	-0.3到7	V
FB 输入(3 脚)	FB	-0.3到7	V
最大工作结温	Tjmax	150	$^{\circ}$
存储温度	Tsto	-55 到 150	$^{\circ}$
焊接温度(Soldering, 10secs)	Tlea	260	$^{\circ}$

注释:超过最大额定值可能损毁器件;超过推荐工作范围的芯片功能特性不能保证;长时间工作于最大额定条件下可能会影响器件的稳定性。

6 推荐工作条件

参数	最小	最大	单位
工作环境温度	-40	+105	$^{\circ}$

7 结构框图



8 电气特性

(无特殊说明, 其测试条件为: VDD =16V, TA = 25℃)

参数	符号	测试条件	最小	典型	最大	单位	
电源电压 (VDD)							
启动电流	I DD_sd	VDD=16V		1. 1	20	uA	
工作电流	I DD_op	FB=2V, CS=0V, VDD=20V		1	1. 5	mA	
VDD 进入欠压阈值	UVLO(ON)	VDD 下降	8. 1	9.0	9.8	V	
VDD 退出欠压阈值	UVLO(0FF)	VDD 上升	13. 5	14. 5	15. 5	V	
VDD 过压阈值	OVP	VDD 上升直到栅极 关断	26	27. 5	29	V	
VDD 齐纳击穿电压	VDD_zb	IDD=10mA	30	32. 5	35	V	
频率 (FOSC)	频率(FOSC)						
IC 最大频率	Freq_Max		55	60	65	KHz	
频率抖动范围	△f/Freq			+/-5		%	
电流检测 (SENSE)							
导通 LEB 时间	TLEB			500		ns	
过流阈值	Vocp		980	1000	1020	mV	
输入阻抗	ZSENSE		100			Kohm	
软启动	T_sst			10		ms	
恒流/恒压控制 (CC/CV)							
EA 的基准电压	Vref_EA		1. 98	2	2.02	V	
EA 的直流增益	Gain			70		dB	
最大输出线补偿电流	I_CMP_MAX	FB=2V, CMP=0V		38		uA	
采样端 LEB 时间	SLEB			2		us	
功率 MOSFET							
MOSFET 漏源击穿电压	BVdss		600			V	
导通电阻	Rdson	Static, Id=0.5A			4.6	Ω	

9 典型应用

应用说明:

PL3536 为小功率的适配器/充电器应用提供了很有效的解决方案,其新颖的恒流/恒压控制使得系统不需要次级反馈电路,并能实现高精度的恒流/恒压输出,从而满足更严格的能源损耗要求。

9.1 启动电流和工作电流

PL3536 具有低的启动电流,因而可以采用大的启动电阻以及小的 VDD 电容以降低应用中的功率损耗。

PL3536 的工作电流小至 1mA, 再加上特有的复合模式控制, 从而提高了系统的效率, 特别是系统处于轻载条件下。

9.2 软启动

系统上电后,当 VDD 达到 UVLO(0FF),芯片开始工作,其振荡频率及 CS 端的峰值电压会逐步增加,因而会降低外部元件在芯片启动过程中的电压应力。芯片每次重启都伴随着软启动。

9.3 恒压/恒流调节

恒压/恒流的调节主要是基于系统工作在 DCM 模式。

工作于 DCM 模式的反激式开关电源,可以通过辅助绕组来采样输出电压。功率管导通时,原边电流逐步增加,功率管关闭后,原边电流传输到次

级,并形成次级电流 I_{Spk} 。

$$I_{Spk} = \frac{N_P}{N_S} \bullet I_{Ppk} \tag{1}$$

IPpk 为功率管关闭后的原边峰值电流。

通过次级绕组和辅助绕组之间的耦合,输出电压可以下式得到:

$$V_o = \frac{Ns \cdot V_{aux}}{N_{aux}} - \Delta V \tag{2}$$

 V_{aux} 是辅助绕组的电压, ΔV 是次级二极管的压降。

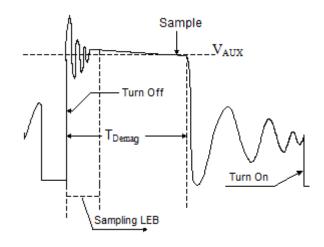


图 2 辅助绕组电压波形

基于内部的时序控制,辅助绕组的电压可以通过 对连接于辅助绕组和 FB 之间的分压电阻采样得 到。在恒压工作模式中,内部误差放大器对采样

的电压进行调节,从而得到恒定的输出电压。 在恒流工作模式中,不管系统的输出电压大小, 芯片会保持输出电流恒定。

9.4 可编程恒流点及输出功率

在小于 15W 的应用中, CS 端不同的采样电阻会得到不同的恒流点。输出功率的大小可通过调节 CS 端的采样电阻实现, 采样电阻越大, 恒流点越小, 同时输出功率也越小。

9.5 开关频率及电感补偿

PL3536 的开关频率大小取决于系统负载状态以及芯片工作模式。恒压模式中芯片通常工作在最大频率。假设系统的效率是 100%, 那么输出功率可由下式给出:

$$Po = \frac{1}{2} L_{m} f_{sw} I_{Ppk}^{2} = Vo \bullet Io$$
(3)

Lm 是原边绕组的电感值, *IPpi* 是原边绕组的峰值电流。

从上式中可看出,Lm 的变化会导致功率的变化,同时也影响恒流模式中的输出电流的恒定性,在

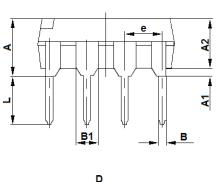
大规模应用中会使得芯片的一致性变差。为了降低原边绕组电感量变化产生的效应,芯片内置了补偿电路,使得电感值和频率的乘积恒定,并矫正电感量的误差,从而得到准确的恒流点。

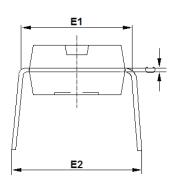
9.6 可编程的输出线补偿

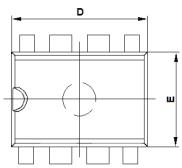
由原边反馈原理可知,输出电压通过辅助绕组采 样得到,这样会影响恒压的精度,为提高负载调 节率,芯片内置了输出线补偿电路,那么系统在 空载和满载状态时,输出电压可保持恒定。

不同的应用中,通过调节连接于 FB 端的分压电阻可得到不同的线补偿量, FB 端的分压电阻越大,那么补偿量也越大。

9.7 保护功能


PL3536 内置了多种保护功能,包括:逐周期限流保护,VDD 钳位保护,软启动,欠压保护,短路保护,开路保护,过压保护,过载保护等。


当 PL3536 的 VDD 电压下降到 UVLO(ON),或者 VDD 电压上升到 OVP 阈值,芯片将不工作,同时会进入重启状态。


10 封装

DIP8 封装

DIP8 封装尺寸:

符号	毫米尺寸		英寸尺寸	
	最小	最大	最小	最大
А	3.710	5.334	0.146	0.210
A1	0.381		0.015	
A2	2.921	4.953	0.115	0.195
В	0.350	0.650	0.014	0.026
B1	1.524(BSC)		0.06(BSC)	
С	0.200	0.360	0.008	0.014
D	9.000	10.160	0.354	0.400
E	6.096	7.112	0.240	0.280
E1	7.320	8.255	0.288	0.325
е	2.540(BSC)		0.1(BS	SC)
L	2.921	3.810	0.115	0.150
E2	7.620	10.920	0.300	0.430

11 注意事项

聚元有权在任何时刻修改其产品信息, 恕不另行通知; 客户在下订单前应确保产品信息的及时更新和完整性。