RGB Encoder

Description

The CXA2075M is an encoder IC that converts analog RGB signals to a composite video signal. This IC has various pulse generators necessary for encoding. Composite video outputs and Y/C outputs for the S terminal are obtained just by inputting composite sync, subcarrier and analog RGB signals.
It is best suited to image processing of personal computers and video games.

Compared to the CXA1645M, the CXA2075M has superior points as follows:

1. The number of parts reduced (5 parts)

Clamp capacitor
Regulator capacitor resistor
Resistor for filter
2. External parts reduced by the internal TRAP
(External TRAP can be also selected)
3. Higher band of R, G, B OUT

Features

- Single 5V power supply
- Compatible with both NTSC and PAL systems
- Built-in 75Ω drivers
(RGB output, composite video output, Y output, C output)
- Both sine wave and pulse can be input as a subcarrier.
- Built-in band-pass filter for the C signal and delay line for the Y signal
- Built-in $R-Y$ and $B-Y$ modulator circuits
- Built-in PAL alternate circuit
- Burst flag generator circuit
- Half H killer circuit

Applications

Video games and personal computers

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings

- Supply voltage Vcc
- Operating temperature Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation
$\begin{array}{ll}\text { PD } & 780\end{array}$
- Input pin applied voltage RIN, GIN, BIN, SCIN, NPIN, SYNCIN and Vcc pins voltage or below, GND pin voltage or above

Recommended Operating Condition

Supply voltage Vcc1, $2 \quad 5.0 \pm 0.25$
V

Block Diagram and Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	GND1	OV	-	Ground for all circuits other than RGB, composite video and Y / C output circuits. The leads to GND2 should be as short and wide as possible.
$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { RIN } \\ & \text { GIN } \\ & \text { BIN } \end{aligned}$	Black level when clamped		Analog RGB signal inputs. Input at $100 \%=1 \mathrm{Vp}$-p (max.). To minimize clamp error, input at as low impedance as possible. ICLP turns ON only in the burst flag period.
5	NC			NO CONNECTION
6	SCIN	-		Subcarrier input. Input 0.4 to 5.0 V p-p sine wave or pulse. Refer to Notes on Operation, Nos. 2 and 4.
7	NPIN	1.7 V when open		Pin for switching between NTSC and PAL modes. NTSC: Vcc, PAL: GND
8	BFOUT	$\begin{aligned} & \mathrm{H}: 3.6 \mathrm{~V} \\ & \mathrm{~L}: 3.2 \mathrm{~V} \end{aligned}$		BF pulse monitoring output. Incapable of driving a 75Ω load.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
9	NC			NO CONNECTION
10	SYNCIN	2.2 V		Composite sync signal input. Input TTLlevel voltages. $\begin{aligned} & L(\leq 0.8 \mathrm{~V}): \text { SYNC period } \\ & H(\geq 2.0 \mathrm{~V}) \end{aligned}$
11	NC			NO CONNECTION
12	Vcc1	5.0 V	-	Power supply for all circuits other than RGB, composite video and Y/C output circuits. Refer to Notes on Operation, Nos. 3 and 8.
13	NC			NO CONNECTION
14	NC			NO CONNECTION
15	COUT	1.6 V		Chroma signal output. Capable of driving a 75Ω load. Refer to Notes on Operation, Nos. 5 and 7.
16	YOUT	$\begin{gathered} \text { Black level } \\ 1.35 \mathrm{~V} \end{gathered}$		Y signal output. Capable of driving a 75Ω load. Refer to Notes on Operation, Nos. 5 and 7 .

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { No. } \\ \hline \end{array}$	Symbol	Pin voltage	Equivalent circuit	Description
17	YTRAP	$\begin{gathered} \text { Black level } \\ 2.13 \mathrm{~V} \end{gathered}$		Pin for reducing cross color caused by the subcarrier frequency component of the Y signal. When the CVOUT pin is in use, connect a capacitor or a capacitor and an inductor in series between YTRAP and GND. Decide capacitance and inductance, giving consideration to cross color and the required resolution. No influence on the YOUT pin. Internal TRAP can be also used. Refer to Notes on Operation, No. 6.
18	NC			NO CONNECTION
19	Vcc2	5.0 V	-	Power supply for RGB, composite video and Y / C output circuits. Decouple this pin with a large capacitor of $10 \mu \mathrm{~F}$ or above as a high current flows. Refer to Notes on Operation, Nos. 3 and 8.
20	CVOUT	Black level 0.97 V		Composite video signal output. Capable of driving a 75Ω load. Refer to Notes on Operation, Nos. 5 and 7.
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { BOUT } \\ & \text { GOUT } \\ & \text { ROUT } \end{aligned}$	Black level 1.2 V		Analog RGB signal outputs. Capable of driving a 75Ω load. Refer to Notes on Operation, Nos. 5 and 7.
24	GND2	OV	-	Ground for RGB, composite video and Y/C output circuits. The leads to GND1 should be as short and wide as possible.

Electrical Characteristics $\quad\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right.$, See the Electrical Characteristics Measurement Circuit.)

Item	Symbol	S1	S2	S3	S4	Measurement pin	Measurement conditions	Min.	Typ.	Max.	Unit
		$\begin{aligned} & \text { RIN } \\ & \text { GIN } \\ & \text { BIN } \end{aligned}$	SCIN	NPIN	$\begin{gathered} \text { SYNC } \\ \text { IN } \end{gathered}$						
Current consumption 1	Icc1	2.75 V	SG4	5V	SG5	Icc1	No input signal, SG5: CSYNC TTL level, SG4: SIN wave 3.58 MHz $0.5 \mathrm{Vp}-\mathrm{p}$ Fig. 1	-	67	-	mA
Current consumption 2	Icc2					Icc2		-	40	-	
(R, G, BOUT)											
RGB output voltage	Vo (R)	SG1			2V	D	SG1 to SG3: DC direct coupling 3.2VDC, $1.0 \mathrm{Vp}-\mathrm{p}$ $\mathrm{f}=200 \mathrm{kHz}$ Pin $9=$ Clamp voltage* Fig. 2	0.64	0.69	0.72	V
	Vo (G)	SG2				E					
	Vo (B)	SG3				F					
RGB output frequency characteristics	fc (R)	SG1			2V	D	SG1 to SG3: DC direct coupling 3.2VDC, $1.0 \mathrm{Vp}-\mathrm{p}$ $\mathrm{f}=27 \mathrm{MHz} / 200 \mathrm{kHz}$ Pin $9=$ Clamp voltage Fig. 3	-5	-3.2	-	dB
	fc (G)	SG2				E		-5	-3.4	-	dB
	fc (B)	SG3				F		-5	-3.8	-	dB
(YOUT)											
Output sync level	Vo (YS1/2)	$\begin{gathered} \text { SG1 } \\ \text { to } \\ \text { SG3 } \end{gathered}$	OV	5V	SG5	B	SG1 to SG3: 100\% color bar input, 1.0Vp-p (Max.) SG5: CSYNC TTL level Fig. 4	0.24	0.27	0.31	Vp-p
R100\%: Y level	Vo (YR1/2)							0.19	0.215	0.24	
G100\%: Y level	Vo (YG1/2)							0.38	0.405	0.43	
B100\%: Y level	Vo (YB1/2)							0.06	0.076	0.09	
White 100\%: Y level	Vo (YW1/2)							0.63	0.682	0.79	
Output frequency characteristics	fc (Y1/2)	$\begin{gathered} \text { SG1 } \\ \text { to } \\ \text { SG3 } \end{gathered}$	OV	5 V	2V		```SG1 to SG3: DC direct coupling 3.2VDc, \(1.0 \mathrm{Vp}-\mathrm{p}\) \(\mathrm{f}=5 \mathrm{MHz} / 200 \mathrm{kHz}\) Pin \(9=\) Clamp voltage```	-1	-0.13	-	dB
(CVOUT)											
Output sync level	Vo (YS1/2)	$\begin{array}{\|c} \text { SG1 } \\ \text { to } \\ \text { SG3 } \end{array}$	OV	5V	SG5	C	SG1 to SG3: 100\% color bar input, 1.0Vp-p (Max.) SG5: CSYNC TTL level Fig. 4	0.22	0.24	0.27	Vp-p
R100\%: Y level	Vo (YR1/2)							0.18	0.208	0.23	V
G100\%: Y level	Vo (YG1/2)							0.35	0.376	0.41	V
B100\%: Y level	Vo (YB1/2)							0.055	0.071	0.085	V
White 100\%: Y level	Vo (YW1/2)							0.61	0.66	0.75	V
Output frequency characteristics	fc (Y1/2)	$\begin{gathered} \text { SG1 } \\ \text { to } \\ \text { SG3 } \end{gathered}$	OV	5 V	2V		```SG1 to SG3: DC direct coupling 3.2VDC, \(1.0 \mathrm{Vp}-\mathrm{p}\) \(\mathrm{f}=5 \mathrm{MHz} / 200 \mathrm{kHz}\) Pin \(9=\) Clamp voltage```	-3.3	-1.53	-	dB

[^0]| | | S1 | S2 | S3 | S4 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Symbol | RIN
 GIN
 BIN | SCIN | NPIN | $\begin{gathered} \text { SYNC } \\ \text { IN } \end{gathered}$ | Measure-
 ment
 pin | Measurement conditions | Min. | Typ. | Max. | Unit |
| (COUT) | | | | | | | | | | | |
| Burst level | Vo (BN1/2) | $\begin{aligned} & \text { SG1 } \\ & \text { to } \\ & \text { SG3 } \end{aligned}$ | SG4 | 5 V | SG5 | A | | 0.24 | 0.282 | 0.34 | Vp-p |
| R chroma ratio | R/BN1/2 | | | | | | | 2.8 | 3.17 | 3.6 | |
| R phase | өR1/2 | | | | | | | 99 | 104 | 111 | deg |
| G chroma ratio | G/BN1/2 | | | | | | | 2.7 | 3.06 | 3.8 | |
| G phase | $\theta \mathrm{G} 1 / 2$ | | | | | | | 232 | 238 | 246 | deg |
| B chroma ratio | B/BN1/2 | | | | | | | 1.8 | 2.1 | 2.35 | |
| B phase | өB1/2 | | | | | | | 341 | 348 | 356 | deg |
| Burst width | tw (B) $1 / 2$ | | | | | | | 2.35 | 2.6 | 2.8 | $\mu \mathrm{s}$ |
| Burst position | to (B) $1 / 2$ | | | | | | | 0.35 | 0.68 | 0.95 | $\mu \mathrm{s}$ |
| Carrier leak | VL1/2 | $\begin{array}{\|l} \text { SG1 } \\ \text { to } \\ \text { SG3 } \end{array}$ | SG4 | 5 V | SG5 | | SG1 to SG3:
 No signal,
 SG4: SIN wave,
 3.58 MHz
 $0.5 \mathrm{Vp}-\mathrm{p}$
 SG5: CSYNC
 TTL level
 3.58 MHz component measured. Fig. 6 | - | 6 | 29 | mVp-p |

Electrical Characteristics Measurement Circuit

Measuring Signals and Output Waveforms

Fig. 1

BOUT
Fig. 2

Fig. $3 \quad \mathrm{fc}=20 \log \frac{\mathrm{Vo}(27 \mathrm{MHz})}{\mathrm{Vo}(200 \mathrm{kHz})}$

Fig. 4

$f=3.58 \mathrm{MHz}$

$\begin{aligned} R / B N & =\frac{V_{0(C R)}}{V_{0}(B N)} \\ G / B N & =\frac{V_{0(C G)}}{V_{0}(B N)} \\ B / B N & =\frac{V_{0(C B)}}{V_{0}(B N)}\end{aligned}$

Fig. 5

Fig. 6

Application Circuit (NTSC internal TRAP mode)

Application Circuit (NTSC external TRAP mode)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit (PAL internal TRAP mode)

Application Circuit (PAL external TRAP mode)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Operation

Analog RGB signals input from Pins 2, 3 and 4 are clamped in the clamping circuit and output from Pins 23, 22 and 21 , respectively.

The matrix circuit performs operations on each input signal, generating luminance signal Y and color difference signals $R-Y$ and $B-Y$. The Y signal enters the delay line to adjust delay time with the chroma signal C. Then, after addition of the CSYNC signal input from Pin 10, the Y signal is output from Pin 16.

A subcarrier input from Pin 6 is input to the phase shifter, where its phase is sfited 90°. Then, the subcarrier is input to the modulators and modulated by the $\mathrm{R}-\mathrm{Y}$ signal and the $\mathrm{B}-\mathrm{Y}$ signal. The modulated subcarriers are mixed, sent to the band-pass filter to eliminate higher harmonic components and finally output from Pin 15 as the C signal. At the same time, Y and C signals are mixed and output from Pin 20 as the composite video signal.

Burst Signal

The CXA2075M generates burst signals at the timing shown below according to the composite sync signal input.

Notes on Operation

Be careful of the following when using the CXA2075M.

1. Be sure that analog RGB signals are input at $1.0 \mathrm{Vp}-\mathrm{p}$ maximum and have low enough impedance. High impedance may affect color saturation, hue, etc. Inputting RGB signals in excess of $1.3 \mathrm{Vp}-\mathrm{p}$ may disable the clamp operation.
2. The SC input (Pin 6) can be either a sine wave or a pulse in the range from 0.4 to $5.0 \mathrm{Vp}-\mathrm{p}$.

However, when a pulse is input, its phase may be shifted several degrees from that of the sine wave input. In the IC, the SC input is biased to $1 / 2 \mathrm{Vcc}$. Accordingly, when a $5.0 \mathrm{Vp}-\mathrm{p}$ pulse is input and the duty factor deviates from 50\%, High- and Low-level pulse voltages may exceed Vcc and GND in the IC, which causes subcarrier distortion. In such a case, be very careful that the duty factor keeps to 50%.
3. When designing a printed circuit board pattern, pay careful attention to the routing of the Vcc and GND leads. To decouple the Vcc pin, use tantalum, ceramic or other capacitors with good frequency characteristics. Ground the capacitors by connections shown below as closely to each IC pin as possible. Try to design the leads as short and wide as possible.

```
Vcc1... GND1
Vcc2... GND2
```

Design the pattern so that Vcc is connected to GND via a capacitor at the shortest distance.
4. SC and SYNC input pulses

Attach a resistor and a capacitor to eliminate high-frequency components of SC (Fig. A) and SYNC (Fig. B) before input.

Fig. A

Fig. B

Be careful not to input pulses containing high-frequency components. Otherwise, high-frequency components may flow into Vcc, GND and peripheral parts, resulting in malfunctions.
5. Connecting an external resistor to the 75Ω driver output pin

A capacitance of several dozen picofarads at each pin may start oscillation. To prevent oscillation, design the pattern so that a 75Ω resistor is mounted near the pin (see Fig. C).

* Make these leads short.

Fig. C

When any of the 75Ω driver output pins is not in use, leave it unconnected and design the pattern so that no parasitic capacitance is generated on the printed circuit board.
6. YTRAP pin (Pin 17)

There are the following three means of reducing cross color generated by subcarrier frequency components contained in the Y signal.
(1) Install a capacitor of 30 to $68 p F$ between YTRAP and GND. Decide the capacitance by conducting image evaluation, etc., giving consideration to both cross color and resolution.
Relations between capacitance and picture quality are as follows:

Capacitance	$30 \mathrm{pF} \longleftrightarrow$ 68pF
Cross color Resolution	Large \longleftrightarrow Small High \longleftrightarrow Low

(2) Connect a capacitor C and an inductor L in series between YTRAP and GND. When the subcarrier frequency is $f 0$, the values C and L are determined by the equation $f_{0}=\frac{1}{2 \pi \sqrt{L C}}$. Decide the values in image evaluation, etc., giving consideration to both cross color and resolution.
Relations between inductor values and picture quality are as follows:

Inductor value	Small \longleftrightarrow Large
Cross color Resolution	Large \longleftrightarrow Small High \longleftrightarrow Low

For instance, $\mathrm{L}=68 \mu \mathrm{H}$ and $\mathrm{C}=28 \mathrm{pF}$ are recommended for NTSC. It is necessary to select an inductor L with a sufficiently small DC resistance. Method (2) is more useful for achieving a higher resoluation than method (1). When an even higher resolution is necessary, use of the S terminal (YOUT and COUT) is recommended.
(3) TRAP built in the IC can be used. Connect a resistor which determines to between YTRAP (Pin 17) and Vcc. Refer to Application Circuit. Be very careful of frequency characteristics and picture quality, and then use them.

NTSC mode	$\mathrm{R}=3.32 \mathrm{k} \Omega$
PAL mode	$\mathrm{R}=2.61 \mathrm{k} \Omega$

7. Driving COUT (Pin 15), YOUT (Pin 16), CVOUT (Pin 20), and B.G.R OUT (Pins 21, 22 and 23) outputs In Pin Description, "Capable of driving a 75Ω load" means that the pin can drive a capacitor $+75 \Omega+75 \Omega$ load shown in the figure below. In other words, the pin is capable of driving a 150Ω load in AC.

8. This IC employs a number of 75Ω driver pins, so oscillation is likely to occur when measures described in Nos. 3 and 5 are not taken thoroughly. Be very careful of oscillation in printed circuit board design and carry out thorough investigations in the actual driving condition.

24PIN SOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SOP-24P-L01
EIAJ CODE	*SOP024-P-0300-A
JEDEC CODE	-

MOLDING COMPOUND	EPOXY/PHENOL RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY / 42ALLOY
PACKAGE WEIGHT	0.3 g

[^0]: * Clamp voltage: voltage appearing at Pin 9 when CSYNC is input.

