TPA SERIES

FEATURES

- BIDIRECTIONAL CROWBAR PROTECTION.
- VOLTAGE RANGE: FROM 62 V TO 270 V.
- HOLDING CURRENT :
$I_{H}=150 \mathrm{~mA}$ min.
- REPETITIVE PEAK PULSE CURRENT : IPP $=50 \mathrm{~A}, 10 / 1000 \mu \mathrm{~s}$.

DESCRIPTION

The TPA series are TRISIL devices especially designed for protecting sensitive telecommunication equipment against lightning and transient voltages induced by AC power lines. They are available in the DO-15 axial package.
TRISIL devices provide bidirectional protection by crowbar action. Their characteristic response to transient overvoltages makes them particularly suited to protect voltage sensitive telecommunication equipment.

SCHEMATIC DIAGRAM

COMPLIES WITH THE FOLLOWING STANDARDS:	Peak Surge Voltage (V)	Voltage Waveform ($\mu \mathrm{s}$)	Current Waveform ($\mu \mathrm{s}$)	Admissible Ipp (A)	Necessary Resistor (Ω)
(CCITT) ITU-K20	1000	10/700	5/310	25	-
(CCITT) ITU-K17	1500	10/700	5/310	38	-
VDE0433	2000	10/700	5/310	50	-
VDE0878	2000	1.2/50	1/20	50	-
IEC-1000-4-5	level 3 level 4	$\begin{aligned} & 10 / 700 \\ & 1.2 / 50 \end{aligned}$	$\begin{gathered} 5 / 310 \\ 8 / 20 \end{gathered}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	
FCC Part 68, lightning surge type A	$\begin{gathered} 1500 \\ 800 \end{gathered}$	$\begin{aligned} & 10 / 160 \\ & 10 / 560 \end{aligned}$	$\begin{aligned} & 10 / 160 \\ & 10 / 560 \end{aligned}$	$\begin{aligned} & 75 \\ & 55 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 6.5 \end{gathered}$
FCC Part 68, lightning surge type B	1000	9/720	5/320	25	-
BELLCORE TR-NWT-001089 First level	$\begin{aligned} & 2500 \\ & 1000 \end{aligned}$	$\begin{gathered} 2 / 10 \\ 10 / 1000 \end{gathered}$	$\begin{gathered} 2 / 10 \\ 10 / 1000 \end{gathered}$	$\begin{gathered} 150 \\ 50 \end{gathered}$	$\begin{gathered} 11.5 \\ 10 \end{gathered}$
BELLCORE TR-NWT-001089 Second level	5000	2/10	2/10	150	11.5
CNET I31-24	1000	0.5/700	0.8/310	25	-

TPA SERIES
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter		Value	Unit
P	Power dissipation on infinite heatsink	$\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$	1.7	W
IPP	Peak pulse current	$10 / 1000 \mu \mathrm{~s}$ $8 / 20 \mu \mathrm{~s}$	50 100	A
		$\mathrm{tp}=20 \mathrm{~ms}$	30	A
$\mathrm{I}_{\mathrm{TSM}}$	Non repetitive surge peak on-state current	$\mathrm{tp}=20 \mathrm{~ms}$	9	$\mathrm{~A}^{2} \mathrm{~s}$
$\mathrm{I}^{2} \mathrm{t}$	$\mathrm{I}^{2} \mathrm{t}$ value for fusing	V_{RM}	5	$\mathrm{kV} / \mathrm{\mu s}$
$\mathrm{dV} / \mathrm{dt}$	Critical rate of rise of off-state voltage		-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range			
T_{j}	Maximum junction temperature		${ }^{\circ} \mathrm{C}$	

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
$R_{\text {th }}(\mathrm{j}-\mathrm{l})$	Junction to leads (L- lead $=10 \mathrm{~mm}$)	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }}(\mathrm{j}-\mathrm{a})$	Junction to ambient on printed circuit (Llead $=10 \mathrm{~mm})$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter
V_{RM}	Stand-off voltage
I_{R}	Leakage current at stand-off voltage
V_{R}	Continuous Reverse voltage
V_{BR}	Breakdown voltage
V_{BO}	Breakover voltage
I_{H}	Holding current
I_{BO}	Breakover current
I_{PP}	Peak pulse current
C	Capacitance

Type	$\begin{aligned} & \mathrm{I}_{\mathrm{RM}} @ \mathrm{~V}_{\mathrm{RM}} \\ & \max . \end{aligned}$		$\mathrm{I}_{\mathrm{R}}^{\max } \text { @ } \mathrm{V}_{\mathbf{R}}$		$\begin{aligned} & \mathrm{V}_{\mathrm{BO}} @ \mathrm{I}_{\mathrm{Bo}} \\ & \text { max. } \\ & \text { note } 2 \end{aligned}$		I_{H} min. note 3 mA	C max. note 4 pF
	$\mu \mathrm{A}$	v	$\mu \mathrm{A}$	v	v	mA		
TPA62	2	56	50	62	82	800	150	150
TPA68	2	61	50	68	90	800	150	150
TPA100	2	90	50	100	133	800	150	100
TPA120	2	108	50	120	160	800	150	100
TPA130	2	117	50	130	173	800	150	100
TPA180	2	162	50	180	240	800	150	100
TPA200	2	180	50	200	267	800	150	100
TPA220	2	198	50	220	293	800	150	100
TPA240	2	216	50	240	320	800	150	100
TPA270	2	243	50	270	360	800	150	100

$\begin{array}{llll}\text { Note 1: } \\ \text { Note 3: measured at } V_{R} \text { guarantee } V_{B R m i n} \mid V_{R} & \text { See test circuit 2. }\end{array}$

TEST CIRCUIT 1 FOR $I_{\text {BO }}$ and $V_{B O}$ parameters :

TEST PROCEDURE :

- Pulse Test duration ($\mathrm{tp}=20 \mathrm{~ms}$):
- For Bidirectional devices $=$ Switch K is closed
- For Unidirectional devices $=$ Switch K is open.
- Vout Selection
- Device with $\mathrm{V}_{\mathrm{BO}}<200$ Volt

$$
-V_{\text {OUT }}=250 \text { V }_{\text {RMS }}, R_{1}=140 \Omega .
$$

- Device with $\mathrm{V}_{\text {bo }} 200$ Volt
$-V_{\text {OUt }}=480$ V $_{\text {RMS }}, R_{2}=240 \Omega$.

TEST CIRCUIT 2 for IH parameter.

This is a GO-NOGO Test which allows to confirm the holding current (l_{H}) level in a functional test circuit.

TEST PROCEDURE :

- 1) Adjust the current level at the I_{H} value by short circuiting the AK of the D.U.T.

2) Fire the D.U.T with a surge Current : $\operatorname{Ipp}=10 \mathrm{~A}, 10 / 1000 \mu \mathrm{~s}$.
3) The D.U.T will come back off-state within 50 ms max.

Fig. 1: Non repetitive surge peak on-state current versus overload duration (Tj initial $=25^{\circ} \mathrm{C}$).

Fig. 3: Relative variation of junction capacitance versus reverse applied voltage (typical values). Note: For $V_{R M}$ upper than 56 V , the curve is extrapolated (dotted line).

C[VR]/C[VR=1V]

Fig. 2: Relative variation of holding current versus junction temperature.
$\mathrm{IH}[\mathrm{Tj}] / \mathrm{IH}\left[\mathrm{Tj}=25^{\circ} \mathrm{C}\right]$

Fig. 4: On-state current versus on-state voltage (typical values).

Fig. 5: Transient thermal impedance junction to ambient versus pulse duration (for FR4 PC Board with $\left.T_{\text {lead }}=10 \mathrm{~mm}\right)$.

Zth(j-a)($\left.{ }^{\circ} \mathrm{CW}\right)$

ORDER CODE

MARKING: Logo, Date Code, Part Number.

PACKAGE MECHANICAL DATA
DO-15 (Plastic)

REF.	DIMENSIONS			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	6.05	6.75	0.238	0.266
B	2.95	3.53	0.116	0.139
C	26	31	1.024	1.220
D	0.71	0.88	0.028	0.035

Weight: 0.4 g

Packaging : Standard packaging is in tape and reel.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

