
PN Unijunction Transistors Silicon PN Unijunction Transistors

... designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits. These devices feature:

- Low Peak Point Current 2 μA (Max)
 Low Emitter Reverse Current 200 nA (Max)
 Passivated Surface for Reliability and Uniformity

2N2646 2N2647

PN UJTs

STYLE 1

*MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit mW	
Power Dissipation, Note 1	PD	300		
RMS Emitter Current	IE(RMS)	50	mA	
Peak Pulse Emitter Current, Note 2	İE	2	Amps	
Emitter Reverse Voltage	V _{B2E}	30	Volts	
Interbase Voltage	V _{B2B1}	35	Volts	
Operating Junction Temperature Range	Tj	-65 to +125	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

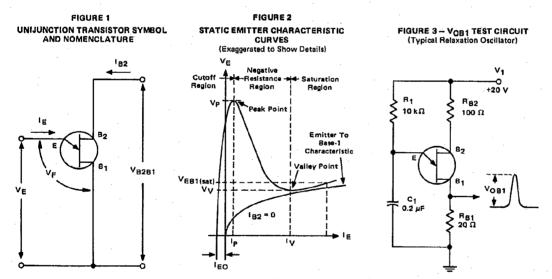
*Indicates JEDEC Registered Data.

Notes: 1. Derate 3 mW/C increase in ambient temperature. The total power dissipation (available power to Emitter and Base-Two) must be limited by the external circuitry.

2. Capacitor discharge -- 10 μF or less, 30 volts or less

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Mín	Тур	Max	Unit
Intrinsic Standoff Ratio (VB2B1 = 10 V), Note 1	2N2646 2N2647	η	0.56 0.68	=	0.75 0.82	-
Interbase Resistance (VB2B1 = 3 V, IE = 0)		rBB	4.7	7	9.1	k ohms
Interbase Resistance Temperature Coefficient (V _{B2B1} = 3 V, I _E = 0, T _A = -55°C to +125°C)		αrBB	0.1	-	0,9	%/°C
Emitter Saturation Voltage (VB2B1 = 10 V, IE = 50 mA), Note 2		VEB1(sat)	-	3.5		Volts
Modulated Interbase Current (VB2B1 = 10 V, IE ≈ 50 mA)		IB2(mod)	Ī -	15	_	mA
Emitter Reverse Current (VB2E = 30 V, IB1 = 0)	2N2646 2N2647	IEB2O	_	0.005 0.005	12 0.2	μΑ
Peak Point Emitter Current (VB2B1 = 25 V)	2N2646 2N2647	lp	=	1	5 2	μА
Valley Point Current (VB2B1 = 20 V, RB2 = 100 ohms), Note 2	2N2646 2N2647	fy	4 8	6 10	— 18	mA
Base-One Peak Pulse Voltage (Note 3, Figure 3)	2N2646 2N2647	VOB1	3 6	5 7	_	Volts


*Indicates JEDEC Registered Data.

Notes:
1. Intrinsic standoff ratio, η_c is defined by equation: $v_0 = V_F$

$$\eta = \frac{V_P - V_F}{V_{B2B1}}$$

Where Vp = Peak Point Emitter Voltage
VB2B1 = Interbase Voltage
VF = Emitter to Base-One Junction Diode Drop
(= 0.45 V @ 10 μA)

- Use pulse techniques: PW ≈ 300 μs, duty cycle ≤ 2% to avoid internal heating due to interbase modulation which may result in erroneous readings.
- Base-One Peak Pulse Voltage is measured in circuit of Figure 3. This specification is used to ensure minimum pulse amplitude for applications in SCR firing circuits and other types of pulse circuits.

MOTOROLA THYRISTOR DEVICE DATA