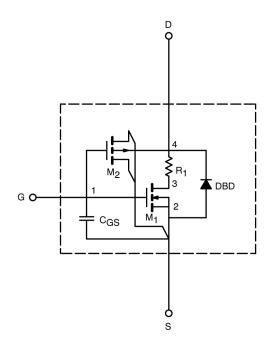


Vishay Siliconix

N-Channel 40-V (D-S) Temperature Sensing MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Model Subcircuit Schematic)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 70923 www.vishay.com
16-Jun-99 1

SPICE Device Model SUB60N04-15LT

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Typical	Unit	
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 1 \mu A$	1.	V	
Zero Gate Voltage Drain Current	I _{Dss}	$V_{DS} = 35 \text{ V}, V_{GS} = 0 \text{ V}$	0.001	μΑ	
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 20 A	0.008	Ω	
		V_{GS} = 4.5 V, I_{D} = 20 A	0.012		
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 20 A	36	S	
Diode Forward Voltage ^a	V_{SD}	$I_F = I_S = 1.25 \text{ A}, V_{GS} = 0 \text{ V}$	0.91	V	
Dynamic					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	1865	pf	
Output Capacitance	Coss		564		
Reverse Transfer Capacitance	C _{rss}		180		
Total Gate Charge ^b	Q_g	V_{DS} = 20 V, V_{GS} = 10 V, I_{D} = 25 A	43	nC	
Gate-Source Charge ^b	Q_gs		6		
Gate-Drain Charge ^b	Q_{gd}		11		
Turn-On Delay Time ^{b, c}	t _{d(on)}	$V_{DD} = 20 \text{ V, } R_L = 0.8 \Omega$ $I_D \cong 25 \text{ A, } V_{GEN} = 10 \text{ V, } R_G = 2.5 \Omega$ $I_F = \text{ A, } \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	11.5	ns	
Rise Time ^{b, c}	t _r		12.6		
Turn-Off Delay Time ^{b, c}	t _{d(off)}		37		
Fall Time ^{b, c}	t _f		9.5		
Source-Drain Reverse Recovery Time	t _{rr}				

www.vishay.com Document Number: 70923

<sup>a. Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2%.
b. Independent of operating temperature.
c. Include only parasitic components presented in the model circuit</sup>

SPICE Device Model SUB60N04-15LT

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)					
COMMITTION OF MODEL WITH MERCONED DAWN (1) 20 O ONLEGO OTHER WICE HOTED)					

Document Number: 70923 www.vishay.com 16-Jun-99 3