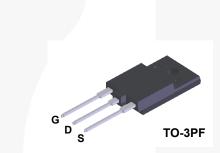
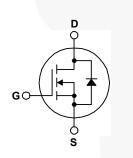
FAIRCHILD

SEMICONDUCTOR®

December 2013

FQAF11N90C N-Channel QFET[®] MOSFET


900 V, 7.0 A, 1.1 Ω

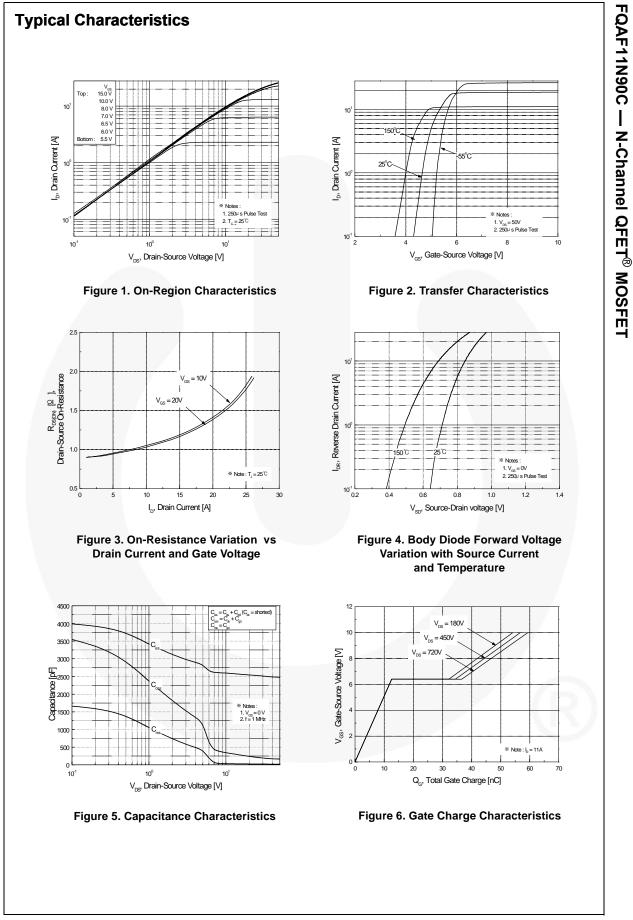

Description

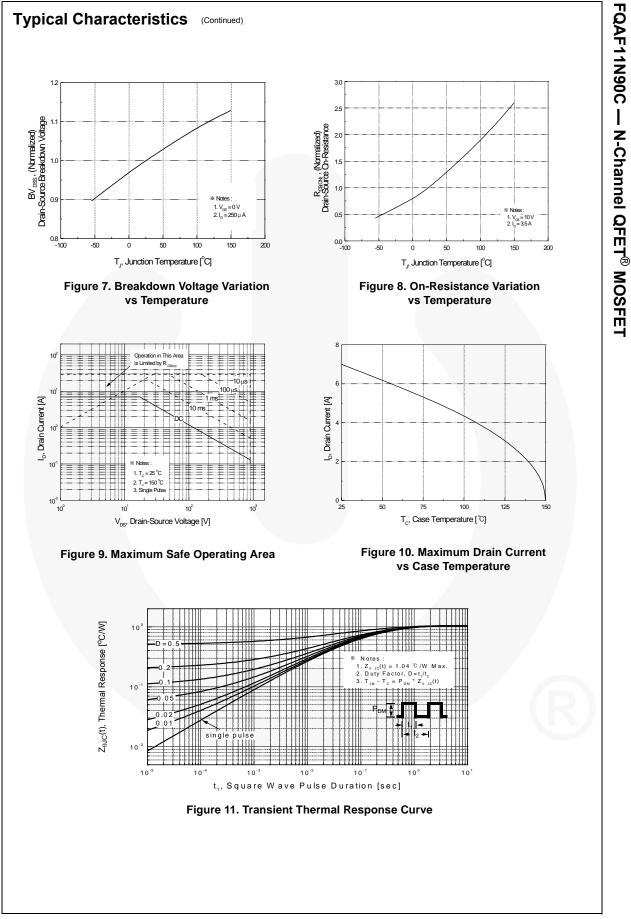
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

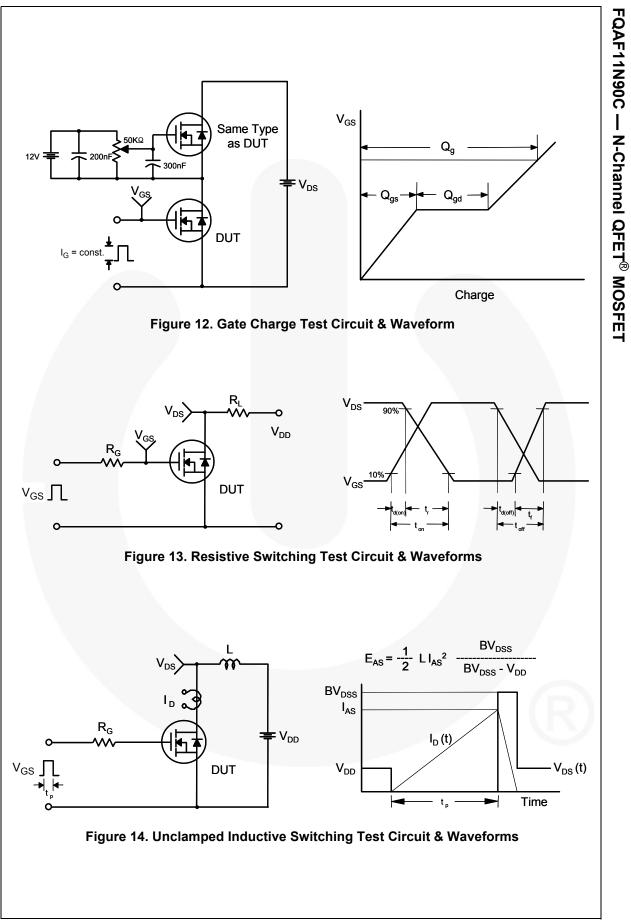
Features

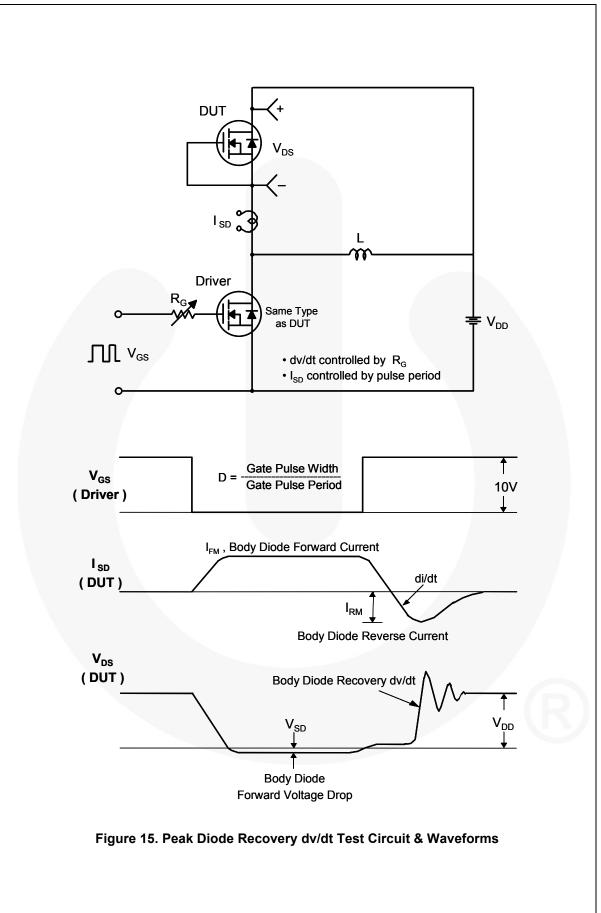
- 7.0 A, 900 V, $R_{DS(on)}$ = 1.1 Ω (Max.) @ V_{GS} = 10 V, I_D = 3.5 A
- Low Gate Charge (Typ. 60 nC)
- Low Crss (Typ. 23 pF)
- 100% Avalanche Tested

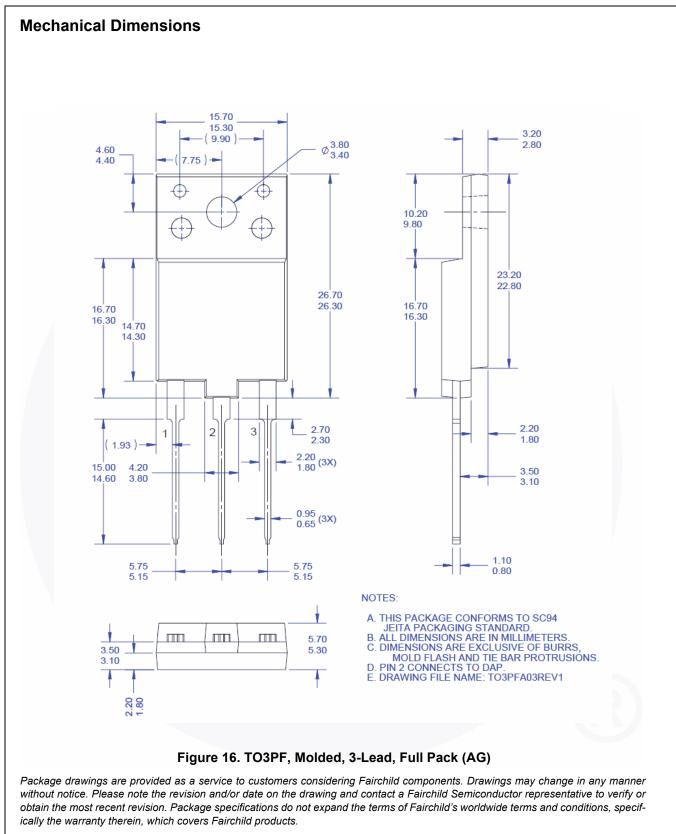
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.


Symbol	Parameter		FQAF11N90C	Unit
V _{DSS}	Drain-Source Voltage		900	V
ID	Drain Current - Continuous ($T_C = 25^{\circ}C$)		7.0	A
	- Continuous (T _C = 100°C)		4.4	A
I _{DM}	Drain Current - Pulsed	Note 1)	28.0	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	Note 2)	960	mJ
I _{AR}	Avalanche Current	Note 1)	7.0	A
E _{AR}	Repetitive Avalanche Energy	Note 1)	12	mJ
dv/dt	Peak Diode Recovery dv/dt	Note 3)	4.0	V/ns
PD	Power Dissipation (T _C = 25°C)		120	W
	- Derate above 25°C		0.96	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds.		300	°C


Thermal Characteristics


Symbol	Parameter	FQAF11N90C	Unit
R _{θJC}	Thermal Resistance, Junction-to-Case, Max.	1.04	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W


	Number	Top Mark	Packa	ige	Packing Method	d Reel	Size	Tape W	idth	Quantity
FQAF	11N90C	FQAF11N90C	TO-3F	PF	Tube	N	/A	N/A		30 units
lectri	cal Cha	racteristics	T _C = 25°C u	unless other	wise noted.					
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Cha	racterist	ics								
BV _{DSS}	Drain-Sou	irce Breakdown Volta	age	V _{GS} = 0	V, I _D = 250 μA		900			V
ΔBV_{DSS} / ΔT_{J}	Breakdow Coefficien	n Voltage Temperati t	ure	I _D = 250	μA , Referenced t	o 25°C		1.0		V/°C
I _{DSS}	Zoro Coto	Zero Gate Voltage Drain Current		V _{DS} = 900 V, V _{GS} = 0 V					10	μA
					20 V, T _C = 125°C				100	μA
I _{GSSF}	Gate-Bod	y Leakage Current, I			$V, V_{DS} = 0 V$				100	nA
I _{GSSR}	Gate-Bod	y Leakage Current, I	Reverse	V _{GS} = -3	0 V, V _{DS} = 0 V				-100	nA
On Cha	racterist	ics								
V _{GS(th)}	Gate Thre	shold Voltage		$V_{DS} = V_{C}$	_{GS} , I _D = 250 μA		3.0		5.0	V
R _{DS(on)}	Static Dra On-Resist			V _{GS} =10	V, I _D =3.5 A			0.91	1.1	Ω
9 _{FS}	Forward T	ransconductance		V _{DS} = 50) V, I _D = 3.5 A					S
	ł									
Dvnam	ic Charad	cteristics								
Dynam C _{iss}	ic Charac	cteristics acitance		Vpc = 25	$i \vee V_{cc} = 0 \vee$			2530	3290	pF
-	Input Cap			V _{DS} = 25 f = 1.0 M	5 V, V _{GS} = 0 V, Hz			2530 215	3290 280	pF pF
C _{iss} C _{oss}	Input Cap Output Ca	acitance								-
C _{iss} C _{oss} C _{rss}	Input Cap Output Ca Reverse T	acitance apacitance Fransfer Capacitance						215	280	pF
C _{iss} C _{oss} C _{rss} Switchi	Input Cap Output Ca Reverse T	acitance apacitance	e	f = 1.0 M	Hz			215	280	pF
C _{iss} C _{oss} C _{rss} Switchi	Input Cap Output Ca Reverse T	acitance apacitance Fransfer Capacitance acteristics Delay Time	e	f = 1.0 M V _{DD} = 45	Hz 50 V, I _D = 11.0 A,			215 23	280 30	pF pF
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r	Input Cap Output Ca Reverse T ng Chara Turn-On E Turn-On F	acitance apacitance Fransfer Capacitance acteristics Delay Time	e	f = 1.0 M	Hz 50 V, I _D = 11.0 A,			215 23 60	280 30 130	pF pF ns
$\frac{C_{iss}}{C_{oss}}$ $\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_{d(off)}}$	Input Cap Output Ca Reverse T ng Chara Turn-On E Turn-On F	acitance apacitance Transfer Capacitance acteristics Delay Time Rise Time Delay Time	e	f = 1.0 M V _{DD} = 45	Hz 50 V, I _D = 11.0 A,	(Note 4)	 	215 23 60 130	280 30 130 270	pF pF ns ns
$\frac{C_{iss}}{C_{oss}}$ $\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$	Input Cap Output Ca Reverse T ng Chara Turn-On E Turn-On F Turn-Off E	acitance apacitance fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time	9	f = 1.0 M V _{DD} = 45 R _G = 25	Hz 50 V, I _D = 11.0 A, Ω	(Note 4)	 	215 23 60 130 130	280 30 130 270 270	pF pF ns ns ns
C_{iss} C_{oss} C_{rss} $Switchi$ $t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} Q_{g}	Input Cap Output Ca Reverse T ing Chara Turn-On E Turn-On F Turn-Off E Turn-Off F Total Gate	acitance apacitance fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time	e	f = 1.0 M $V_{DD} = 45$ $R_G = 25$ $V_{DS} = 72$	Hz 50 V, I _D = 11.0 A, Ω	(Note 4)	 	215 23 60 130 130 85	280 30 130 270 270 180	pF pF ns ns ns ns
C_{iss} C_{oss} C_{rss} Switch i $t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} Q_{g} Q_{gs}	Input Cap Output Ca Reverse T ing Chara Turn-On E Turn-On F Turn-Off E Turn-Off F Total Gate	acitance apacitance Fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time Charge rce Charge	e	f = 1.0 M V _{DD} = 45 R _G = 25	Hz 50 V, I _D = 11.0 A, Ω	(Note 4) (Note 4)	 	215 23 60 130 130 85 60	280 30 130 270 270 180 80	pF pF ns ns ns ns nc
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Cap Output Ca Reverse 1 ng Chara Turn-On E Turn-Off E Turn-Off F Turn-Off F Total Gate Gate-Sour Gate-Drai	acitance apacitance Transfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time e Charge rce Charge n Charge	9	f = 1.0 M $V_{DD} = 45$ $R_G = 25$ $V_{DS} = 72$ $V_{GS} = 10$	Hz 50 V, I _D = 11.0 A, Ω 20 V, I _D = 11.0 A,) V		 	215 23 60 130 130 85 60 13	280 30 130 270 270 180 80 	pF pF ns ns ns nC nC
C_{iss} C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Input Cap Output Ca Reverse 1 Ing Chara Turn-On E Turn-Off E Turn-Off F Total Gate Gate-Soui Gate-Drai	acitance apacitance Transfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time e Charge roe Charge n Charge	e stics and	f = 1.0 M $V_{DD} = 45$ $R_G = 25$ $V_{DS} = 72$ $V_{GS} = 10$ d Maxin	Hz 50 V, I _D = 11.0 A, Ω 20 V, I _D = 11.0 A,) V mum Ratings		 	215 23 60 130 130 85 60 13	280 30 130 270 270 180 80 	pF pF ns ns ns nC nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Cap Output Ca Reverse T ing Chara Turn-On E Turn-On F Turn-Off E Turn-Off F Total Gate Gate-Soui Gate-Drai	acitance apacitance Fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time Charge rce Charge n Charge n Charge	e s s s tics and Source Diod	$f = 1.0 M$ $V_{DD} = 4\xi$ $R_G = 25$ $V_{DS} = 72$ $V_{GS} = 10$ $d Maxin$ $d Forwar$	Hz 50 V, I _D = 11.0 A, Ω 20 V, I _D = 11.0 A,) V mum Ratings rd Current		 	215 23 60 130 130 85 60 13 25	280 30 130 270 270 180 80 7.0	pF pF ns ns ns nc nC nC A
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \end{array} \\ \begin{array}{c} \textbf{Switchi} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \end{array} \\ \begin{array}{c} \textbf{Drain-S} \\ \textbf{I}_{S} \\ \textbf{I}_{SM} \\ \end{array} \end{array}$	Input Cap Output Ca Reverse T ing Chara Turn-On E Turn-On F Turn-Off E Turn-Off F Total Gate Gate-Sour Gate-Drai Source Di Maximum	acitance apacitance Fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time Charge rce Charge n Charge n Charge ode Characteri Continuous Drain-S Pulsed Drain-Source	stics and source Diode Fo	$f = 1.0 M$ $V_{DD} = 45$ $R_{G} = 25$ $V_{DS} = 72$ $V_{GS} = 10$ $d Maxiii$ In Forward Cu	Hz $(50 V, I_D = 11.0 A, \Omega)$ $(20 V, I_D = 11.0 A, \Omega)$ $(20 V, I_D = 11.0 A, \Omega)$ The second se		 	215 23 60 130 130 85 60 13 25	280 30 130 270 270 180 80 	pF pF ns ns ns nC nC nC
C_{iss} C_{oss} C_{rss} Switch i $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S I_s	Input Cap Output Ca Reverse T ng Chara Turn-On E Turn-Off E Turn-Off F Total Gate Gate-Sour Gate-Drai Source Di Maximum Maximum Drain-Sou	acitance apacitance Fransfer Capacitance acteristics Delay Time Rise Time Delay Time Fall Time Charge rce Charge n Charge n Charge	stics and source Diod ce Diode Fo Voltage	$f = 1.0 \text{ M}$ $V_{DD} = 45$ $R_G = 25$ $V_{DS} = 72$ $V_{GS} = 10$ $d \text{ Maxiii}$ $e \text{ Forwar}$ $rward Cu$ $V_{GS} = 0$	Hz 50 V, I _D = 11.0 A, Ω 20 V, I _D = 11.0 A,) V mum Ratings rd Current		 	215 23 60 130 130 85 60 13 25 	280 30 270 270 180 80 7.0 28.0	pF pF ns ns ns nc nC nC A


Notes: 1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 37 mH, I_{AS} = 7.0 Å, V_{DD} = 50 V, R_{G} = 25 Ω , starting T_{J} = 25°C. 3. $I_{SD} \le 11.0$ Å, di/dt ≤ 200 Å/µs, $V_{DD} \le BV_{DSS}$ starting T_{J} = 25°C. 4. Essentially independent of operating temperature.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF3PF-003

FQAF11N90C ---

N-Channel QFET[®] MOSFET

Not In Production

Obsolete

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC