AP2001
MONOLITHIC DUAL CHANNEL PWM CONTROLLER

Features

- Dual PWM control circuitry
- Operating voltage can be up to 50 V
- Adjustable Dead Time Control (DTC)
- Under Voltage Lockout (UVLO) protection
- Short Circuit Protection (SCP)
- Variable oscillator frequency: 500 KHz Max
- $\quad 2.5 \mathrm{~V}$ voltage reference output
- SOP-16L package
- Lead Free Finish/RoHS Compliant for Lead Free products (Note 1)

General Description

The AP2001 integrates Pulse-width-Modulation (PWM) control circuit into a single chip, mainly designed for power-supply regulator. All the functions included are an on-chip 2.5 V reference output, two error amplifiers, an adjustable oscillator two dead-time comparators, UVLO, SCP, DTC circuitry, and dual common-emitter (CE) output transistor circuit.

Recommend the output CE transistors as pre-driver for Driving externally. The DTC can provide from 0\% to 100\%. Switching frequency can be adjustable by trimming RT and CT. During low V_{cc} situation, the UVLO makes sure that the outputs are off until the internal circuit is operating normally.

Applications

- Backlight inverter
- DC/DC converts in computers, etc.

Ordering Information

Note:

1. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.

Device	Package Code	Packaging (Note 2)	Tube		13" Tape and Reel	
Quantity		Quantity	Part Number Suffix			
AP2001S	S	SOP-16L	50	$-U$	$2500 /$ Tape \& Reel	-13

Note: 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Pin Assignments

Pin Descriptions

Name	Description
CT	Timing Capacitor
RT	Timing Resistor
EA+	Error Amplifier Input(+)
EA -	Error Amplifier Input(-)
FB	Feedback Loop Compensation
DTC	Dead Time Control
OUT	Pre-driver Output
GND	Ground
VCC	Supply Voltage
SCP	Short Circuit Protection
REF	Voltage Reference

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V_{CC}	Supply Voltage	40	V
$\mathrm{~V}_{\mathrm{I}}$	Amplifier Input Voltage	20	V
$\mathrm{~V}_{\mathrm{O}}$	Collector Output Voltage	40	V
lo	Collector Output Current	21	mA
$\mathrm{~T}_{\mathrm{OP}}$	Operating Temperature Range	-20 to +85	${ }^{\circ} \mathrm{C}$
T_{ST}	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Lead Temperature 1.6 mm (1/16 inch) from Case for 5 Seconds	245	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	3.6	40	V
$\mathrm{~V}_{\mathrm{I}}$	Amplifier Input Voltage	1.05	1.45	V
$\mathrm{~V}_{\mathrm{O}}$	Collector Output Voltage		40	V
I_{O}	Collector Output Current		20	mA
I_{FB}	Current into Feedback Terminal		45	$\mu \mathrm{~A}$
R_{F}	Feedback Resistor	100		$\mathrm{k} \Omega$
C_{T}	Timing Capacitor	150	15000	pF
R_{T}	Timing Resistor	5.1	100	$\mathrm{k} \Omega$
$\mathrm{F}_{\mathrm{OSC}}$	Oscillator Frequency	1	500	KHz
T_{OP}	Operating Free-air Temperature	-20	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{f}=200 \mathrm{KHz}\right)$

Reference (REF)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{O}	Output Voltage (pin 16)	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	2.4	2.5	2.6	V
	Output Voltage Change with Temperature	$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$		-0.1	± 1	$\%$
	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$		-0.2	± 1	$\%$	
$\mathrm{~V}_{\mathrm{DLI}}$	Input Stability	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \sim 40 \mathrm{~V}$		2	12.5	mV
$\mathrm{V}_{\mathrm{DLO}}$	Output Stability	$\mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~mA} \sim 1 \mathrm{~mA}$		1	7.5	mV
I_{O}	Short-circuit Output Current	$\mathrm{V}_{\mathrm{O}}=0$	3	10	30	mA

Under voltage lockout (UVLO)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{UT}	Upper Threshold Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			2.65		V
$\mathrm{~V}_{\mathrm{LWT}}$	Lower Threshold Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{I}_{(R E F)}=0.1 \mathrm{~mA}$		2.45		V
$\mathrm{~V}_{\mathrm{HT}}$	Hysteresis $\left(\mathrm{V}_{\mathrm{CC}}\right)$	$25^{\circ} \mathrm{C}$		80	200	
			mV			

MONOLITHIC DUAL CHANNEL PWM CONTROLLER

Electrical Characteristics (Continued)

Short-circuit protection (SCP) control

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{IT}	Input Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.65	0.7	0.75	V
$\mathrm{~V}_{\mathrm{STB}}$	Standby Voltage	No pull up	140	185	230	mV
V_{LT}	Latched Input Voltage	No pull up		60	120	mV
$\mathrm{I}_{\mathrm{SCP}}$	Input (Source) Current	$\mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-10	-15	-20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CT}}$	Comparator Threshold Voltage (FB)			1.18		V

Oscillator (OSC)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{F}_{\text {OSC }}$	Frequency	$\mathrm{C}_{\mathrm{T}}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{~K} \Omega$		200		KHz
$\Delta \mathrm{F}_{\text {Osc }}$	Standard Deviation of Frequency	$\mathrm{C}_{\mathrm{T}}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{~K} \Omega$		10		\%
	Frequency Change with Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \sim 40 \mathrm{~V}$		1		
	Frequency Change with Temperature	$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$		-0.4	± 2	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$		-0.2	± 2	

Dead-time control (DTC)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {BDT }}$	Input Bias Current				1	
$\mathrm{l}_{\text {DT }}$	Latch Mode (Source) Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-80	-145		
$V_{D T}$	Latched Input Voltage	$\mathrm{I}_{\mathrm{O}}=40 \mu \mathrm{~A}$	2.3			V
$\mathrm{V}_{\text {T0 }}$	Input Threshold Voltage at $\mathrm{f}=10 \mathrm{KHz}$	Zero duty cycle		2.05	2.25	
$\mathrm{V}_{\mathrm{T} 100}$		Maximum duty cycle	1.2	1.45		

Error-amplifier

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{IO}	Input Offset Voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{FB})=1.25 \mathrm{~V}$			± 6	mV
I_{IO}	Input Offset Current	$\mathrm{V}_{\mathrm{O}}(\mathrm{FB})=1.25 \mathrm{~V}$			± 100	nA
I_{IB}	Input Bias Current	$\mathrm{V}_{\mathrm{O}}(\mathrm{FB})=1.25 \mathrm{~V}$		160	500	nA
V_{CM}	Common-mode Input Voltage Range	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \sim 40 \mathrm{~V}$	1.05 to 1.45			V
AV	Open-loop Voltage Amplification	$\mathrm{R}_{\mathrm{F}}=200 \mathrm{~K} \Omega$	70	80		dB
GBW	Unity-gain Bandwidth		60	80		dB
CMRR	Common-mode Rejection Ratio		$\mathrm{V}_{\text {ref }}-0.1$			V
$\mathrm{~V}_{\mathrm{OH}}$	Max. Output Voltage				1	V
$\mathrm{~V}_{\mathrm{OL}}$	Min. Output Voltage		0.5	1.6		mA
I_{OI}	Output (Sink) Current (FB)	$\mathrm{V}_{\mathrm{ID}}=-0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.25 \mathrm{~V}$	0.5			
I_{OO}	Output (Source) Current (FB)	$\mathrm{V}_{\mathrm{ID}}=0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.25 \mathrm{~V}$	-45	-70		$\mu \mathrm{~A}$

Electrical Characteristics (Continued)

Output section

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {LEAK }}$	Leakage Current	$\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}$			10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {SAT }}$	Output Saturation Voltage	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		1.2	2	V
I_{SC}	Short-circuit Output Current	$\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$		90		mA

PWM comparator

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {T0 }}$	Input Threshold Voltage at $\mathrm{f}=$	Zero duty cycle		2.05	2.25	V
	10 KHz (FB)	Maximum duty cycle	1.2	1.45		V

Total device

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{CCs}}$	Standby Supply Current	Off-state		2.5	3.0	mA
$\mathrm{I}_{\mathrm{CCA}}$	Average Supply Current	$\mathrm{R}_{\mathrm{T}}=10 \mathrm{~K} \Omega$		2.8	3.5	mA

Typical Application Circuit

Dual output DCIDC converter

Marking Information

(1) SOP-16L

SOP-16L

Package Information

(1) Package Type: SOP-16L

IMPORTANT NOTICE
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

