
Fast Soft Recovery Rectifier Diode, 40 A

PRIMARY CHARACTERISTICS					
I _{F(AV)}	40 A				
V_{R}	1000 V, 1200 V				
V _F at I _F	1.4 V				
I _{FSM}	475 A				
t _{rr}	95 ns				
T _J max.	150 °C				
Package	TO-247AC 2L				
Circuit configuration	Single				
Snap factor	0.5				

FEATURES

- Glass passivated pellet chip junction
- 150 °C max. operating junction temperature
- Low forward voltage drop and short reverse recovery time

APPLICATIONS

These devices are intended for use in output rectification and freewheeling in inverters, choppers and converters as well as in input rectification where severe restrictions on conducted EMI should be met.

DESCRIPTION

The VS-45EPF12L-M3, VS-45APF12L-M3 fast soft recovery rectifier series has been optimized for combined short reverse recovery time and low forward voltage drop.

The glass passivation ensures stable reliable operation in the most severe temperature and power cycling conditions.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
V _{RRM}		1000/1200	V		
I _{F(AV)}	Sinusoidal waveform	40	A		
I _{FSM}		475	A		
t _{rr}	1 A, 100 A/μs	95	ns		
V _F	20 A, T _J = 25 °C	1.25	V		
T _J		-40 to +150	°C		

VOLTAGE RATINGS						
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA			
VS-40EPF10-M3	1000	1100	10			
VS-40EPF12-M3	1200	1300	10			

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum average forward current	I _{F(AV)}	T _C = 105 °C, 180° conduction half sine wave	40		
Maximum peak one cycle non-repetitive surge current		10 ms sine pulse, rated V _{RRM} applied	400	Α	
	IFSM	10 ms sine pulse, no voltage reapplied	475		
Maximum I ² t for fusing I ² t	12+	10 ms sine pulse, rated V _{RRM} applied	ne pulse, rated V _{RRM} applied 800		
	I-I	10 ms sine pulse, no voltage reapplied	1131	A ² s	
Maximum $I^2\sqrt{t}$ for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied	11 310	A²√s	

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop	V_{FM}	40 A, T _J = 25 °C		1.4	V
Forward slope resistance	r _t	- T _J = 150 °C		6.82	mΩ
Threshold voltage	V _{F(TO)}			0.94	V
Maximum reverse leakage current	1	T _J = 25 °C	V _B = Rated V _{BBM}	0.1	mA
Maximum reverse leakage current I _{RM}		$T_J = 150 ^{\circ}\text{C}$		10	111/2

RECOVERY CHARACTERISTICS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Reverse recovery time	t _{rr}	In at 10 Anu	450	ns	I _{FM} +
Reverse recovery current	I _{rr}	I _F at 10 A _{pk} 25 A/μs	6	А	
Reverse recovery charge	Q _{rr}	25 °C	1.8	μC	dir/ Q _{rr}
Snap factor	S		0.5		I _{RM(REC)}

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	SYMBOL TEST CONDITIONS		UNITS
Maximum junction and stotemperature range	rage	T _J , T _{Stg}		-40 to +150	°C
Maximum thermal resistant junction to case	ce,	R_{thJC}	DC operation	0.6	
Maximum thermal resistant junction to ambient	ce,	R_{thJA}		40	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2	
Approximate weight			6	g	
				0.21	OZ.
Mounting torque minimum maximum				6 (5)	kgf ⋅ cm
				12 (10)	($lbf \cdot in$)
Marking device			Coop at de TO 247AC 21	40EPF10	
			Case style TO-247AC 2L	40EP	F12

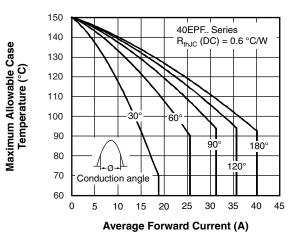


Fig. 1 - Current Rating Characteristics

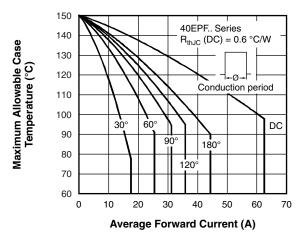


Fig. 2 - Current Rating Characteristics

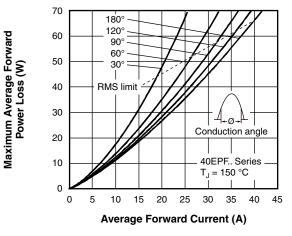


Fig. 3 - Forward Power Loss Characteristics

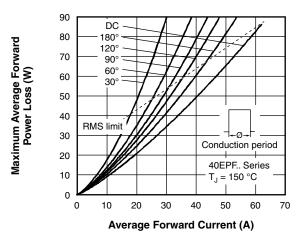


Fig. 4 - Forward Power Loss Characteristics

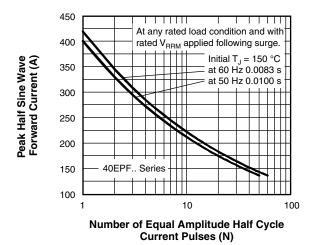


Fig. 5 - Maximum Non-Repetitive Surge Current

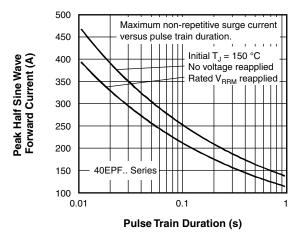


Fig. 6 - Maximum Non-Repetitive Surge Current

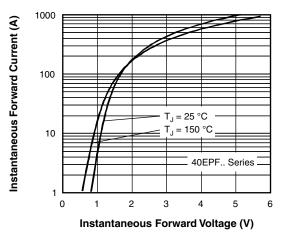


Fig. 7 - Forward Voltage Drop Characteristics

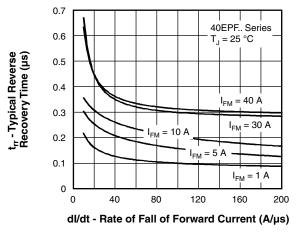


Fig. 8 - Recovery Time Characteristics, $T_J = 25$ °C

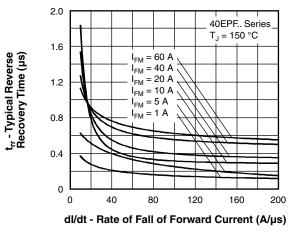


Fig. 9 - Recovery Time Characteristics, $T_J = 150~^{\circ}\text{C}$

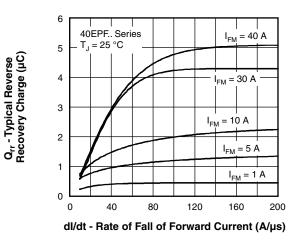


Fig. 10 - Recovery Charge Characteristics, $T_J = 25$ °C

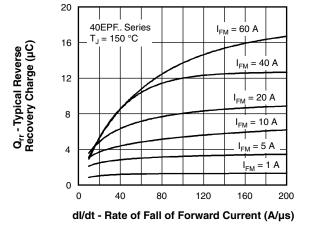
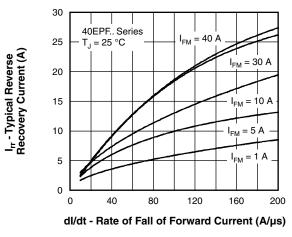



Fig. 11 - Recovery Charge Characteristics, $T_J = 150 \, ^{\circ}\text{C}$

www.vishay.com

50 40EPF.. Series T_J = 150 °C = 60 A40 I_{rr} - Typical Reverse Recovery Current (A) 30 = 20 A 20 $I_{FM} = 5 A$ 10 0 0 40 80 120 160 200 dl/dt - Rate of Fall of Forward Current (A/µs)

Fig. 12 - Recovery Current Characteristics, T_J = 25 °C

Fig. 13 - Recovery Current Characteristics, T_J = 150 °C

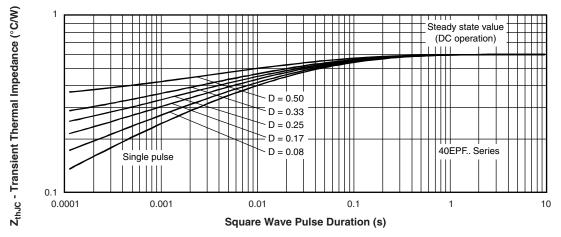
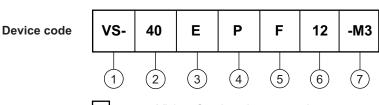



Fig. 14 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product

2 - Current rating (40 = 40 A)

3 - Circuit configuration:

E = single diode

4 - Package:

P = TO-247AC 2L

5 - Type of silicon:

F = fast recovery

- Voltage code x 100 = V_{RRM}

7 - Environmental digit:

-M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

10 = 1000 V

12 = 1200 V

ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-40EPF10-M3	25	500	Antistatic plastic tubes		
VS-40EPF12-M3	25	500	Antistatic plastic tubes		

LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?96144				
Part marking information	www.vishay.com/doc?95648			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

VS-40EPF12PBF VS-40EPF10PBF VS-40EPF12-M3