

FMH13N60ES

FUJI POWER MOSFET

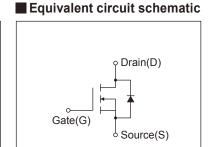
Super FAP-E^{3S} series

N-CHANNEL SILICON POWER MOSFET

■ Features

Maintains both low power loss and low noise Lower R_{DS}(on) characteristic More controllable switching dv/dt by gate resistance Smaller V_{GS} ringing waveform during switching Narrow band of the gate threshold voltage (4.2±0.5V) High avalanche durability

Applications


Switching regulators UPS (Uninterruptible Power Supply) DC-DC converters

Maximum Ratings and Characteristics

● Absolute Maximum Ratings at Tc=25°C (unless otherwise specified)

TO-3P(Q)

■ Outline Drawings [mm]

Description	Symbol	Characteristics	Unit	Remarks	
Drain-Source Voltage	VDS	600	V		
Drain-Source voltage	VDSX	600	V	V _{GS} = -30V	
Continuous Drain Current	ID	±13	Α		
Pulsed Drain Current	IDP	±52	Α		
Gate-Source Voltage	V _{GS}	±30	V		
Repetitive and Non-Repetitive Maximum AvalancheCurrent	IAR	13	Α	Note*1	
Non-Repetitive Maximum Avalanche Energy	Eas	471.5	mJ	Note*2	
Repetitive Maximum Avalanche Energy	Ear	19.5	mJ	Note*3	
Peak Diode Recovery dV/dt	dV/dt	4.7	kV/μs	Note*4	
Peak Diode Recovery -di/dt	-di/dt	100	A/µs	Note*5	
Maximum Power Dissipation	Po	2.50	14/	Ta=25°C	
		195	W	Tc=25°C	
O	Tch	150	°C		
Operating and Storage Temperature range	Tstg	-55 to + 150	°C		

● Electrical Characteristics at Tc=25°C (unless otherwise specified)

Description	Symbol	Conditions	Conditions		typ.	max.	Unit
Drain-Source Breakdown Voltage	BVoss	I _D =250μA, V _{GS} =0V		600	-	-	V
Gate Threshold Voltage	V _{GS} (th)	I _D =250µA, V _{DS} =V _{GS}		3.7	4.2	4.7	V
Zero Gate Voltage Drain Current		V _{DS} =600V, V _{GS} =0V	Tch=25°C	-	-	25	μA
	IDSS	V _{DS} =480V, V _{GS} =0V	Tch=125°C	-	-	250	
Gate-Source Leakage Current	Igss	V _{GS} =±30V, V _{DS} =0V	V _{GS} =±30V, V _{DS} =0V		10	100	nA
Drain-Source On-State Resistance	R _{DS} (on)	I _D =6.5A, V _{GS} =10V	I _D =6.5A, V _{GS} =10V		0.50	0.58	Ω
Forward Transconductance	g fs	I _D =6.5A, V _{DS} =25V		5	10	-	S
nput Capacitance	Ciss	V _{DS} =25V		-	1700	2550	pF
Output Capacitance	Coss	V _{GS} =0V	V _{GS} =0V		190	285	
Reverse Transfer Capacitance	Crss	f=1MHz		-	10	15	
Turn-On Time	td(on)	V_{cc} =300V V_{ds} =10V I_{D} =6.5A R_{G} =18 Ω		-	38	57	ns
	tr			-	24	36	
Turn-Off Time	td(off)			-	86	129	
	tf			-	16	24	
Total Gate Charge	QG	Vcc=300V		-	48	72	nC
Gate-Source Charge	Qgs			-	16	24	
Gate-Drain Charge	Q _{GD}	Us=13A Vss=10V	- I _D =13A		16	24	
Gate-Drain Crossover Charge	Qsw	VGS - 10 V		-	7	10.5	
Avalanche Capability	lav	L=2.36mH, Tch=25°C	L=2.36mH, T _{ch} =25°C		-	-	А
Diode Forward On-Voltage	V _{SD}	I _F =13A, V _{GS} =0V, T _{ch} =25°C		-	0.90	1.08	V
Reverse Recovery Time	trr	I _F =13A, V _{GS} =0V	I _F =13A, V _{GS} =0V		0.7	-	μS
Reverse Recovery Charge	Qrr	-di/dt=100A/µs, Tch=25°C		-	8	-	μC

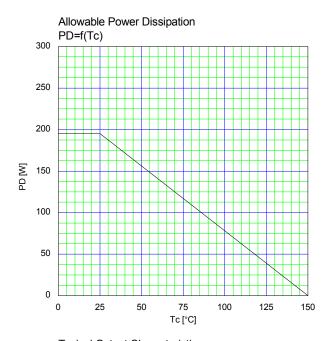
Thermal Characteristics

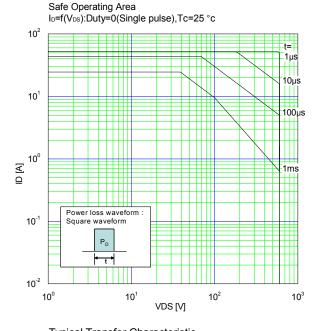
Description	Symbol	Test Conditions	min.	typ.	max.	Unit
Thermal resistance	Rth (ch-c)	Channel to case			0.640	°C/W
	Rth (ch-a)	Channel to ambient			50.0	°C/W

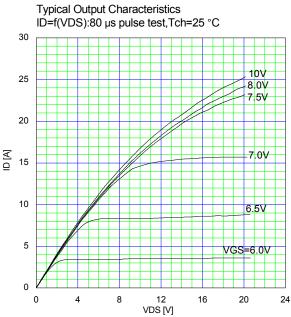
Note *1 : Tch≤150°C

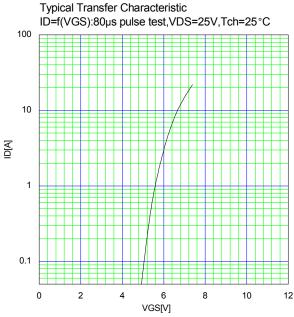
Note *2: Stating Tch=25°C, Ias=6A, L=24.0mH, Vcc=60V, R_G=50Ω

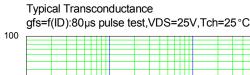
Eas limited by maximum channel temperature and avalanche current.

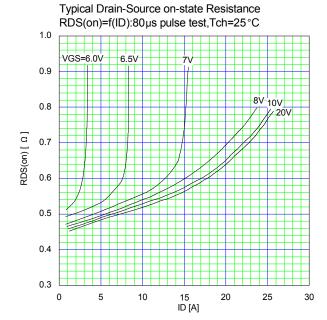

See to 'Avalanche Energy' graph.

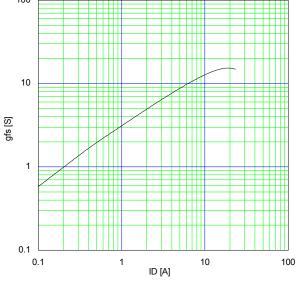

Note $^{\star}3$: Repetitive rating : Pulse width limited by maximum channel temperature

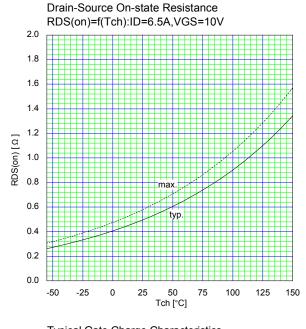

See to the 'Transient Themal impeadance' graph.

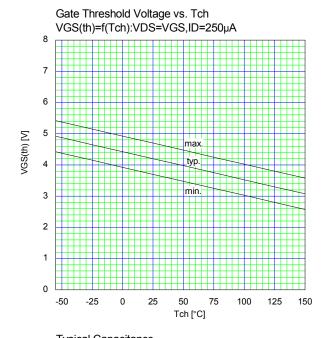

Note *4 : Ir<-ID, -di/dt=100A/µs, Vcc<BVbss, Tch<150°C.
Note *5 : Ir<-ID, dv/dt=4.7kV/µs, Vcc<BVbss, Tch<150°C.

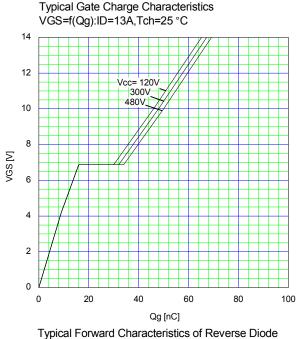

FMH13N60ES **FUJI POWER MOSFET**

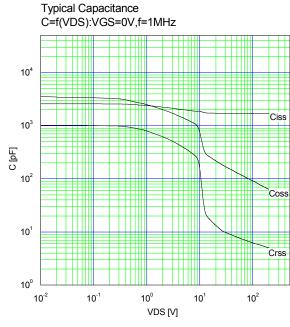


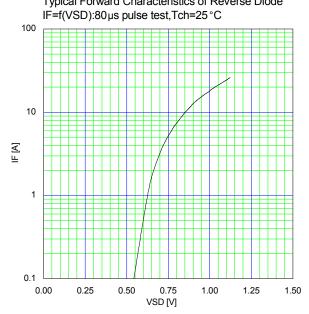


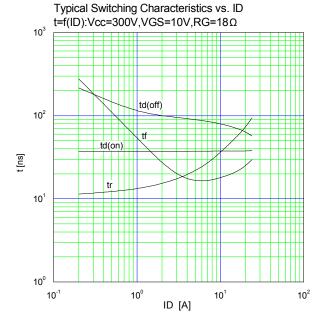


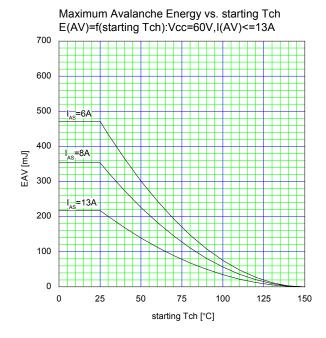


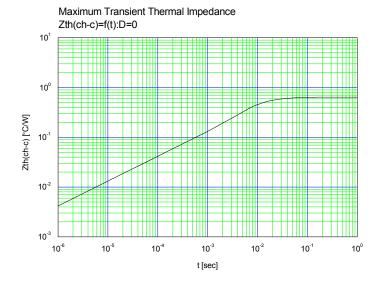





FMH13N60ES FUJI POWER MOSFET







WARNING

- This Catalog contains the product specifications, characteristics, data, materials, and structures as of October 2008.
 The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Device Technology Co., Ltd. is (or shall be deemed) granted. Fuji Electric Device Technology Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Device Technology Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
- ComputersMachine tools
- OA equipment
- Communications equipment (terminal devices)
- Audiovisual equipment
- Electrical home appliances Personal equipment
- Measurement equipment
 Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Device Technology Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - Transportation equipment (mounted on cars and ships)
 - Traffic-signal control equipment

- Trunk communications equipment
- Gas leakage detectors with an auto-shut-off feature
- Emergency equipment for responding to disasters and anti-burglary devices Safety devices
- · Medical equipment

Technology Co., Ltd.

- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - Space equipment
- Aeronautic equipment
- Nuclear control equipment

- Submarine repeater equipment
- 7. Copyright ©1996-2008 by Fuji Electric Device Technology Co., Ltd. All rights reserved.

 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Device
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Device Technology Co., Ltd. or its sales agents before using the product.
 - Neither Fuji Electric Device Technology Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.