
Switching Transistors

NPN Silicon

2N2369

2N2369A*

*Motorola Preferred Device

MAXIMUM RATINGS

Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	VCEO	15	Vdc		
Collector-Emitter Voltage	VCES	40	Vdc		
Collector-Base Voltage	VCBO	40	Vdc		
Emitter-Base Voltage	VEBO	4.5	Vdc		
Collector Current (10 μ s pulse)	IC(Peak)	500	mA		
Collector Current — Continuous	IC	200	mA		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C		
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.68 6.85	Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	486	°C/W
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	147	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I_C = 10 $\mu A,V_{BE}$ = 0)		V(BR)CES	40	—	Vdc
Collector-Emitter Sustaining Voltage ⁽¹⁾ (I_C = 10 mAdc, I_B =	0)	VCEO(sus)	15	—	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μ A, I _B = 0)		V(BR)CBO	40	—	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)		V(BR)EBO	4.5	—	Vdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}, I_E = 0$) ($V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C}$)	2N2369 2N2369A	ІСВО	_	0.4 30	μAdc
Collector Cutoff Current ($V_{CE} = 20 \text{ Vdc}, V_{BE} = 0$)	2N2369A	ICES	_	0.4	μAdc
Base Current (V _{CE} = 20 Vdc, V _{BE} = 0)	2N2369A	Ι _Β	_	0.4	μAdc

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

2N2369 2N2369A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ⁽¹⁾		hFE			_
(I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	2N2369		40	120	
	2N2369A		_	120	
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_{A} = -55^{\circ}C)$	2N2369		20	-	
(I _C = 10 mAdc, V _{CE} = 0.35 Vdc, T _A = –55°C)	2N2369A		20		
$(I_{C} = 30 \text{ mAdc}, V_{CE} = 0.4 \text{ Vdc})$	2N2369A		30	l _	
(10 - 30 m/ad, VCE - 0.4 vac)	21120037		50		
(I _C = 100 mAdc, V _{CE} = 1.0 Vdc)	2N2369A		20	-	
(I _C = 100 mAdc, V _{CE} = 2.0 Vdc)	2N2369		20	_	
	2112000		20) / d a
Collector – Emitter Saturation Voltage ⁽¹⁾	010000	V _{CE(sat)}		0.05	Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	2N2369		_	0.25	
	2N2369A		_	0.20	
(I _C = 10 mAdc, I _B = 1.0 mAdc, T _A = +125°C)	2N2369A		_	0.30	
$(I_{\rm C} = 30 \text{ mAdc}, I_{\rm B} = 3.0 \text{ mAdc})$	2N2369A		_	0.25	
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N2369A		—	0.50	
Base-Emitter Saturation Voltage ⁽¹⁾		V _{BE(sat)}			Vdc
$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})$	All Types		0.70	0.85	
$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc}, T_{A} = +125^{\circ}C)$	2N2369A		0.59	_	
$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc}, T_{A} = -55^{\circ}C)$	2N2369A		_	1.02	
$(I_{\rm C} = 30 \text{ mAdc}, I_{\rm B} = 3.0 \text{ mAdc})$	2N2369A		_	1.15	
$(I_{C} = 100 \text{ mAdc}, I_{B} = 10 \text{ mAdc})$	2N2369A		—	1.60	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product		fт	500	_	MHz
(I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)					
Output Capacitance		C _{obo}	_	4.0	pF
$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$		0.00			
Input Capacitance		C _{ibo}	_	4.0	pF
(V _{EB} = 1.0 Vdc, I _C = 0, f = 1.0 MHz)		100			
SWITCHING CHARACTERISTICS					
Storage Time		ts	_	13	ns
$(I_{C} = I_{B1} = 10 \text{ mAdc}, I_{B2} = -10 \text{ mAdc})$, , , , , , , , , , , , , , , , , , ,			
Turn-On Time		ton		12	ns
$(I_{C} = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mA}, I_{B2} = -1.5 \text{ mA}, V_{CC} = 3.0 \text{ Vdc})$		-011			
Turn–Off Time		toff	_	18	ns
$(I_{C} = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mA}, I_{B2} = -1.5 \text{ mA}, V_{CC} = 3.0 \text{ Vdc})$		чоп			113

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS FOR 2N2369, 2N3227

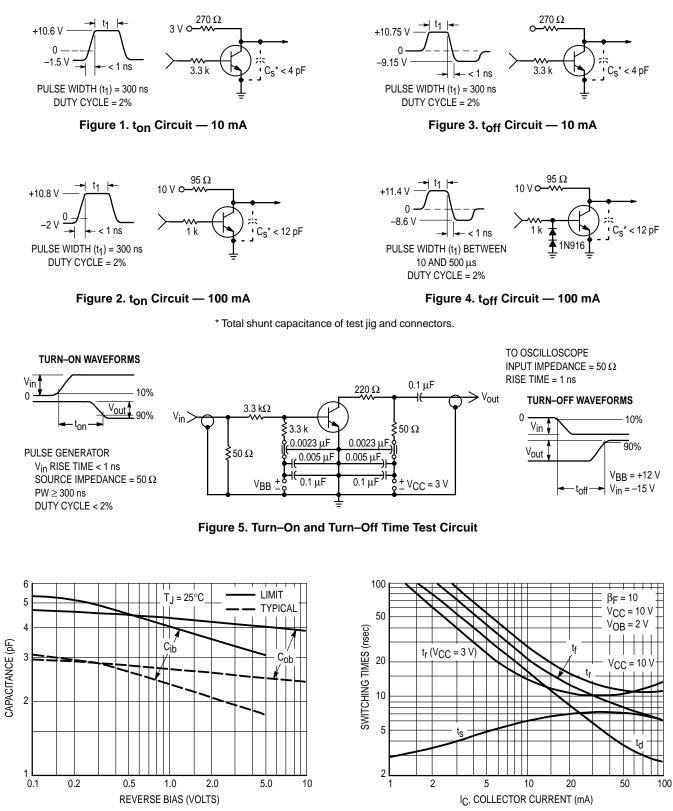


Figure 7. Typical Switching Times

Figure 6. Junction Capacitance Variations

2N2369 2N2369A

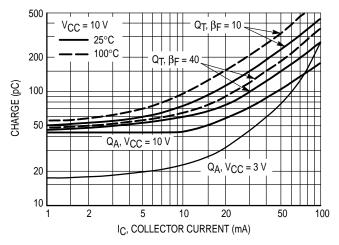
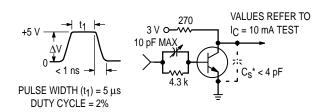



Figure 8. Maximum Charge Data

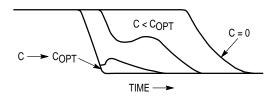
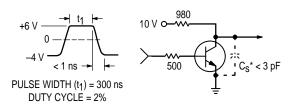



Figure 10. Turn–Off Waveform

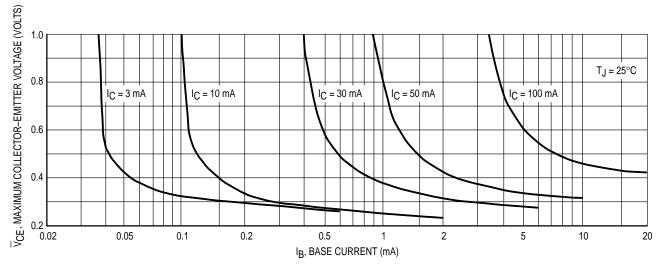


Figure 12. Maximum Collector Saturation Voltage Characteristics

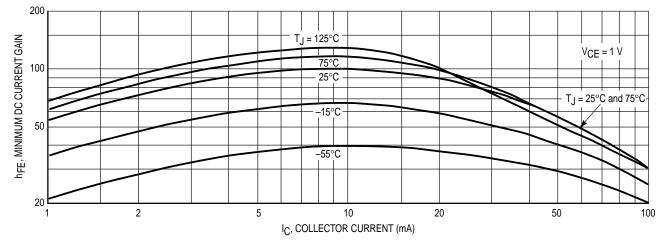


Figure 13. Minimum Current Gain Characteristics

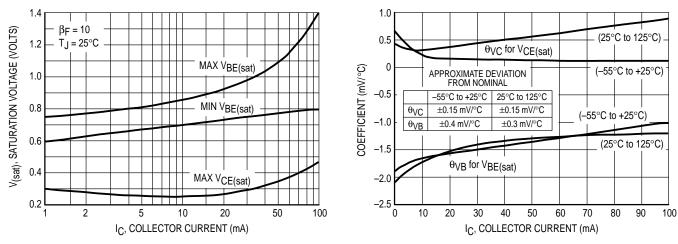
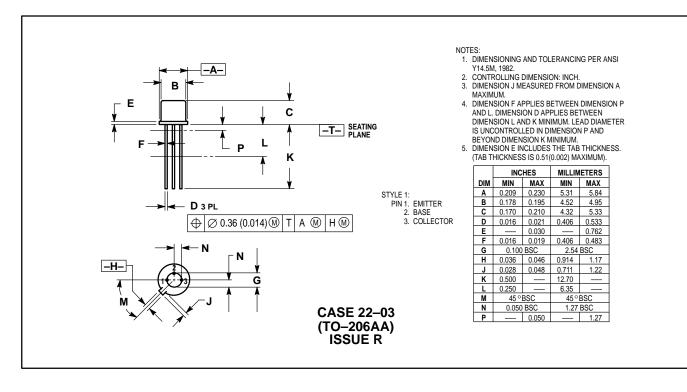



Figure 14. Saturation Voltage Limits

Figure 15. Typical Temperature Coefficients

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 \Diamond

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.