

April 2000

FQB46N15 / FQI46N15 **150V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifire, high efficiency switching for DC/DC converters, and DC motor control, uninterrupted power supply.

Features

- 45.6A, 150V, R_{DS(on)} = 0.042Ω @V_{GS} = 10 V
 Low gate charge (typical 85 nC)
- Low Crss (typical 100 pF) •
- Fast switching
- · 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQB46N15 / FQI46N15	Units
V _{DSS}	Drain-Source Voltage		150	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		45.6	A
	- Continuous (T _C = 100°C)		32.2	A
I _{DM}	Drain Current - Pulsed	(Note 1)	182.4	A
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	650	mJ
I _{AR}	Avalanche Current	(Note 1)	45.6	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	21	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns
PD	Power Dissipation (T _A = 25°C) *		3.75	W
	Power Dissipation (T _C = 25°C)		210	W
	- Derate above 25°C		1.43	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W
* When mounter	ed on the minimum pad size recommended (PCB Mount)			

Cymbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	150			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$		0.16		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 150 V, V _{GS} = 0 V			1	μA
		V _{DS} = 120 V, T _C = 150°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 25 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -25 V, V_{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA			4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 22.8 A		0.033	0.042	Ω
9fs	Forward Transconductance	V _{DS} = 40 V, I _D = 22.8 A (Note 4)		33		S
Dynam C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		2500	3250	pF
C _{iss}	Input Capacitance	$V_{DS} = 25 V. V_{CS} = 0 V.$		2500	3250	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		520	670	pF
C _{rss}	Reverse Transfer Capacitance			100	130	pF
Switch	ing Characteristics					
d(on)	Turn-On Delay Time			35	80	ns
d(on)	Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$		35 320	80 650	ns ns
d(on) r d(off)	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	V_{DD} = 75 V, I _D = 45.6 A, R _G = 25 Ω		35 320 210	80 650 430	ns ns ns
d(on) fr d(off)	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	- V _{DD} = 75 V, I _D = 45.6 A, R _G = 25 Ω (Note 4, 5)	 	35 320 210 200	80 650 430 410	ns ns ns ns
d(on) r d(off) f Q _g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$	 	35 320 210 200 85	80 650 430 410 110	ns ns ns ns
d(on) r d(off) f Q _g Q _{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$	 	35 320 210 200 85 15	80 650 430 410 110 	ns ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	35 320 210 200 85 15 41	80 650 430 410 110 	ns ns ns nC nC nC
t _{d(on)} tr t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	35 320 210 200 85 15 41	80 650 430 410 110 	ns ns ns nC nC
d(on) r d(off) f Ձց Ձց Ձց Ձց Drain-\$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Diage	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4, 5) (Note 4, 5) (Note 4, 5)	 	35 320 210 200 85 15 41	80 650 430 410 110 45.6	ns ns ns nC nC nC
d(on) r d(off) f Δg Δgs Δgg Δgd Drain-S S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode F	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	35 320 210 200 85 15 41	80 650 430 410 45.6 182.4	ns ns ns nC nC nC A A
d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S S SM	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Forward Voltage	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	35 320 210 200 85 15 41	80 650 430 110 45.6 182.4 1.5	ns ns ns nC nC nC A A V
d(on) r d(off) f Q _g Q _g Q _g Q _g Q _g S S S S S S S S S S S S S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Forward Voltage Prain-Source Diode Forward Voltage	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 120 \text{ V}, \text{ I}_{D} = 45.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	35 320 210 200 85 15 41 130	80 650 430 110 45.6 182.4 1.5 	ns ns ns nC nC nC A V Ns

4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

FQB46N15 / FQI46N15 Rev. A

FQB46N15 / FQI46N15

FQB46N15 / FQI46N15

©2000 Fairchild Semiconductor International

Rev. A, April 2000

FQB46N15 / FQI46N15

FQB46N15 / FQI46N15

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FAST[™] GTO[™] HiSeC[™] ISOPLANAR™ MICROWIRE™ POP™ PowerTrench™ QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.