

TMDS351

SLLS840B-MAY 2007-REVISED JULY 2011

www.ti.com

2.5 Gbps 3-TO-1 DVI/HDMI SWITCH

Check for Samples: TMDS351

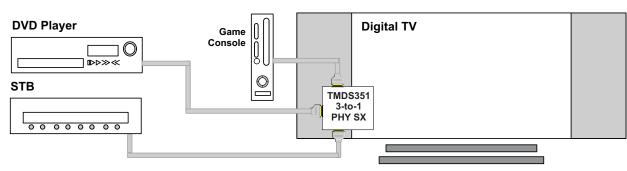
FEATURES

- Compatible with HDMI 1.3a
- Supports 2.5 Gbps Signaling Rate for 480i/p, 720i/p, and 1080i/p Resolutions up to 12-Bit Color Depth
- Integrated Receiver Termination
- Selectable Receiver Equalization to Accommodate to Different Input Cable Lengths
- Intra-Pair Skew < 40 ps
- Inter-Pair Skew < 65 ps
- HBM ESD Protection Exceeds 8 kV to TMDS
 Inputs

- 3.3-V Fixed Supply to TMDS I/Os
- 5-V Fixed Supply to HPD, DDC, and Source Selection Circuits
- 64-Pin TQFP Package
- ROHS Compatible and 260°C Reflow Rated

APPLICATIONS

- Digital TV
- Digital Projector


DESCRIPTION

The TMDS351 is a 3-port digital video interface (DVI) or high-definition multimedia interface (HDMI) switch that allows up to 3 DVI or HDMI ports to be switched to a single display terminal. Four TMDS channels, one hot plug detector, and a digital display control (DDC) interface are supported on each port. Each TMDS channel supports signaling rates up to 2.5 Gbps to allow 1080p resolution in 12-bit color depth.

When S1 is high and S2 is low, all input terminations are disconnected, TMDS inputs are high impedance with standard TMDS terminations, all internal MOSFETs are turned off to disable the DDC links, and all HPD outputs are connected to the HPD_SINK. This allows the initiation of the HDMI physical address discovery process.

Termination resistors (50- Ω), pulled up to V_{CC}, are integrated at each TMDS receiver input. External terminations are not required. A precision resistor is connected externally from the VSADJ pin to ground for setting the differential output voltage to be compliant with the TMDS standard.

The TMDS351 provides two levels of receiver input equalization for different ranges of cable lengths. Each TMDS receiver owns frequency responsive equalization circuits. When EQ sets low, the receiver supports the input connection in short range HDMI cables. When EQ sets high, the receiver supports the input connection in long range HDMI cables. The TMDS351 supports power saving operation. When a system is under standby mode and there is no digital audio/visual content from a connected source, the 3.3-V supply voltage, V_{CC} , can be powered off to minimize power consumption from the TMDS inputs, outputs, and internal switching circuits. The HPD, DDC, and source selection circuits are powered up by the 5-V supply voltage, V_{DD} , to maintain the system hot plug detect response, the DDC link from the selected source to the sink under system standby operation. The device is characterized for operation from 0°C to 70°C.

Typical Application

53

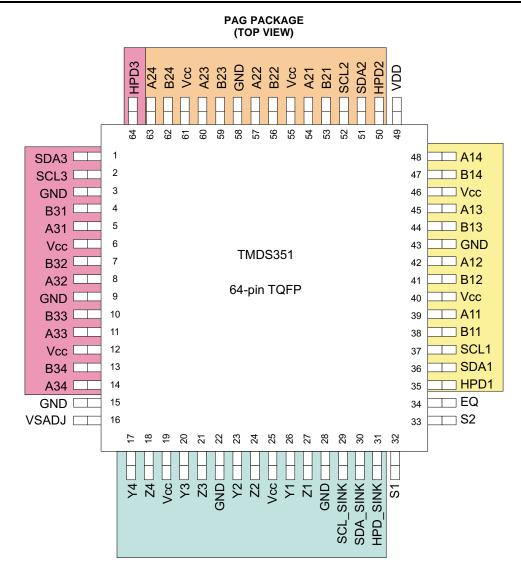
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TMDS351

SLLS840B-MAY 2007-REVISED JULY 2011

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.


B12 A12 B14 B11 B13 A14 A11 A13 ₽ĕ EQ A24 Y4 TMDS Driver B24 Ζ4 A23 TMI B23 Y3 TMDS Driver A22 Ζ3 тмоз Rx B22 Y2 INT TMDS Driver A21 B21 Z2 Vçc Y1 ¢Τ TMDS Driver A34 TMDS Z1 B34 VSADJ A33 TMDS B33 A32 B32 A31 B31 S1 HPD1 Control S2 HPD2 Logic HPD3 HPD_SINK SCL1 SCL_SINK SDA1 SDA_SINK ᠇ᡏ SCL2 SDA2 Jt SCL3 SDA3 HPD/DDC V_{DD} Power Supply

FUNCTIONAL BLOCK DIAGRAM

www.ti.com

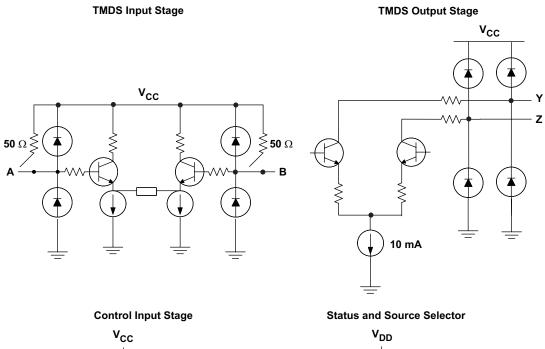
www.ti.com

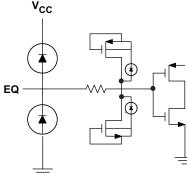
Texas Instruments

PIN FUNCTIONS

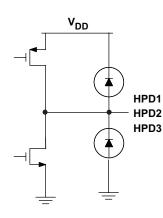
PIN			DECODIDITION
NAME	NO.	I/O	DESCRIPTION
A11, A12, A13, A14	39, 42, 45, 48	I	Source port 1 TMDS positive inputs
A21, A22, A23, A24	54, 57, 60, 63	I	Source port 2 TMDS positive inputs
A31, A32, A33, A34	5, 8, 11, 14	I	Source port 3 TMDS positive inputs
B11, B12, B13, B14	38, 41, 44, 47	I	Source port 1 TMDS negative inputs
B21, B22, B23, B24	53, 56, 59, 62	I	Source port 2 TMDS negative inputs
B31, B32, B33, B34	4, 7, 10, 13	I	Source port 3 TMDS negative inputs
GND	3, 9, 15, 22, 28, 43, 58		Ground
EQ	34	I	TMDS Input equalization selector (control pin) EQ = Low – HDMI 1.3 compliant cable EQ = High – 10m 28 AWG HDMI cable
HPD1	35	0	Source port 1 hot plug detector output (status pin)
HPD2	50	0	Source port 2 hot plug detector output (status pin)
HPD3	64	0	Source port 3 hot plug detector output (status pin)
HPD_SINK	31	Ι	Sink port hot plug detector input (status pin)
SCL1	37	I/O	Source port 1 DDC I ² C clock line
SCL2	52	I/O	Source port 2 DDC I ² C clock line
SCL3	2	I/O	Source port 3 DDC I ² C clock line
SCL_SINK	29	I/O	Sink port DDC I ² C clock line
SDA1	36	I/O	Source port 1 DDC I ² C data line
SDA2	51	I/O	Source port 2 DDC I ² C data line
SDA3	1	I/O	Source port 3 DDC I ² C data line
SDA_SINK	30	I/O	Sink port DDC I ² C data line
S1, S2	32. 33	Ι	Source selector
V _{CC}	6, 12, 19, 25, 40, 46, 55, 61		Power supply
V _{DD}	49		HPD/DDC Power supply
VSADJ	16	I	TMDS compliant voltage swing control (control pin)
Y1, Y2, Y3, Y4	26,23,20,17	0	Sink port TMDS positive outputs
Z1, Z2, Z3, Z4	27,24,21,18	0	Sink port TMDS negative outputs

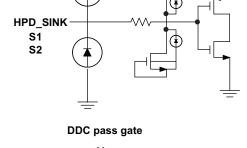
www.ti.com

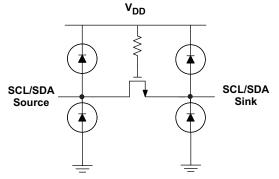

CONTR	OL PINS	I/O SELE	ECTED	но	HOT PLUG DETECT STATUS						
S2	S1	Y/Z	SCL_SINK SDA_SINK	HPD1	HPD2	HPD3					
н	н	A1/B1 Terminations of A2/B2 and A3/B3 are disconnected	SCL1 SDA1	HPD_SINK	L	L					
н	L	A2/B2 Terminations of A1/B1 and A3/B3 are disconnected	SCL2 SDA2	L	HPD_SINK	L					
L	L	A3/B3 Terminations of A1/B1 and A2/B2 are disconnected	SCL3 SDA3	L	L	HPD_SINK					
L	Н	None (Z) All terminations are disconnected	None (Z) Are pulled HIGH by external pull-up termination	HPD_SINK	HPD_SINK	HPD_SINK					


Table 1. Source Selection Lookup⁽¹⁾

(1) H: Logic high; L: Logic low; X: Don't care; Z: High impedance


www.ti.com


EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS



HPD output stage

www.ti.com

ORDERING INFORMATION⁽¹⁾

PART NUMBER	PART MARKING	PACKAGE
TMDS351PAG	TMDS351	64-PIN TQFP
TMDS351PAGR	TMDS351	64-PIN TQFP Tape/Reel

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			UNIT				
Supply voltage range ⁽²⁾	V _{CC}	V _{CC}					
	V _{DD}		–0.5 V to 6 V				
	Anm ⁽³⁾ , Bnm	2.5 V to 4 V					
Voltage range Ym, Zm, VSADJ, EQ SCLn, SCL_SINK, SDAn, SDA_SINK, HPDn,	Ym, Zm, VSADJ, EQ	–0.5V to 4 V					
	HPDn, HPD_SINK, S1, S2	–0.5 V to 6 V					
	$ _{1}$	Anm, Bnm	±8000 V				
Electrostatic	Human body model ⁽⁴⁾	All pins	±4000 V				
discharge	Charged-device model ⁽⁵⁾ (all pins)		±1500 V				
	Machine model ⁽⁶⁾ (all pins)	±200 V					
Continuous power	dissipation		See Dissipation Rating Table				

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) n = 1, 2, 3; m = 1, 2, 3, 4

(4) Tested in accordance with JEDEC Standard 22, Test Method A114-B

(5) Tested in accordance with JEDEC Standard 22, Test Method C101-A

(6) Tested in accordance with JEDEC Standard 22, Test Method A115-A

DISSIPATION RATINGS

PACKAGE	PCB JEDEC STANDARD	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾ ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING
	Low-K	1111 mW	11.19 mW/°C	611 mW
64-TQFP PAG	High-K	1492 mW	14.92	820 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
$R_{\theta J B}$	Junction-to-board thermal resistance			33.4		°C/W
$R_{ extsf{ heta}JC}$	Junction- to-case thermal resistance			15.6		°C/W
P _D	Device power dissipation	$ \begin{array}{l} V_{IH}=V_{CC},V_{IL}=V_{CC}\text{-}0.6\;V,R_{T}=50\;\Omega,AV_{CC}=3.3\;V,\\ Am/Bm(2:4)=2.5\text{-}Gbps\;HDMI\;data\;pattern,\\ Am/Bm(1)=250\text{-}MHz\;clock \end{array} $		590	750	mW
TJ	Junction Temperature		0		125	°C

(1) The maximum rating is simulation under 3.6-V V_{CC} , 5.5-V V_{DD} , and 600 mV V_{ID} .

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
V _{DD}	Standby supply voltage	4.5	5	5.5	V
T _A	Operating free-air temperature	0		70	°C
TMDS DI	FFERENTIAL PINS				
V _{IC}	Input common mode voltage	V _{CC} -0.4		V _{CC} +0.01	V
V _{ID}	Receiver peak-to-peak differential input voltage	150		1560	mVp-p
R _{VSADJ}	Resistor for TMDS compliant voltage swing range	3.66	4.02	4.47	kΩ
AV _{CC}	TMDS output termination voltage, see Figure 1	3	3.3	3.6	V
R _T	Termination resistance, see Figure 1	45	50	55	Ω
	Signaling rate	0		2.5	Gbps
CONTRO	L PINS				
VIH	LVTTL High-level input voltage	2		V _{CC}	V
VIL	LVTTL Low-level input voltage	GND		0.8	V
DDC I/O	PINS				
V _{I(DDC)}	DDC Input voltage	GND		V_{DD}	V
STATUS	and SOURCE SELECTOR PINS	•			
VIH	LVTTL High-level input voltage	2		V_{DD}	V
V _{IL}	LVTTL Low-level input voltage	GND		0.8	V

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TEST CONDITIONS			MAX	UNIT	
I _{cc}	Supply current	$ \begin{array}{ll} V_{IH} = V_{CC}, V_{IL} = V_{CC} - 0.6 \; V, & S1/S2 \\ R_T = 50 \; \Omega, AV_CC = 3.3 \; V & Low/I \\ Am/Bm(2:4) = 2.5 \; Gbps \; HDMI \; data & Low/I \\ pattern & High/ \end{array} $			176	200	mA	
		Am/Bm(1) = 250 MHz clock	S1/S2 = High/Low		8	20		
I _{DD}	Power supply current, 5-V	$ \begin{array}{l} V_{IH} = V_{CC}, \ V_{IL} = V_{CC} - 0.6 \ V, \\ R_T = 50 \ \Omega, \ AV_{CC} = 3.3 \ V \\ Am/Bm(2:4) = 2.5 \ Gbps \ HDMI \ data \ patter \\ Am/Bm(1) = 250 \ MHz \ clock \end{array} $		2	5	mA		
TMDS DI	FFERENTIAL PINS			·				
V _{OH}	Single-ended high-level output voltage		AV _{CC} -10		AV _{CC} +10	mV		
V _{OL}	Single-ended low-level output voltage		AV _{CC} -600		AV_{CC} -400	mV		
V _{swing}	Single-ended output swing voltage		400		600	mV		
V _{OD(O)}	Overshoot of output differential voltage	See Figure 2, AV _{CC} = 3.3 V, R _T = 50 Ω	See Figure 2, $AV_{CC} = 3.3 V$, $B_T = 50 \Omega$			15%	2× V _{swing}	
V _{OD(U)}	Undershoot of output differential voltage					25%	2× V _{swing}	
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states					5	mV	
I _(OS)	Short circuit output current	See Figure 3		-12		12	mA	
V _{I(open)}	Single-ended input voltage under high impedance input or open input	I _I = 10 μA		V _{CC} -10		V _{CC} +10	mV	
R _{INT}	Input termination resistance	V _{IN} = 2.9 V		45	50	55	Ω	
CONTRO	DL PINS							
I _{IH}	High-level digital input current ⁽²⁾	$V_{IH} = 2 V \text{ or } V_{CC}$		-10		10	μA	
I _{IL}	Low-level digital input current ⁽²⁾	V _{IL} = GND or 0.8 V		-10		10	μA	

 $\begin{array}{ll} \mbox{(1)} & \mbox{All typical values are at 25 °C and with a 3.3-V supply.} \\ \mbox{(2)} & \mbox{I}_{IH} \mbox{ and I}_{IL} \mbox{ specifications are not applicable to the VSADJ pin.} \end{array}$

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ⁽¹⁾	MAX	UNIT				
DDC I/O PINS									
l _{lkg}	Input leakage current	$V_{I} = 0.1 V_{DD}$ to 0.9 V_{DD} to isolated DDC inputs	-10	10	μA				
CIO	Input/output capacitance	V _{I(pp)} = 1 V, 100 kHz		10	pF				
R _{ON}	Switch resistance	I _O = 3 mA, V _O = 0.4 V	27	40	Ω				
V _{PASS}	Switch output voltage	V _I = 5 V, I _O = 100 µA	1.9	3.6	V				
STATUS	S AND SOURCE SELECTOR PINS		· ·						
I _{IH}	High-level digital input current	$V_{IH} = 2 V \text{ or } V_{DD}$	-10	10	μA				
I _{IL}	Low-level digital input current	V _{IL} = GND or 0.8 V	-10	10	μA				
V _{OH}	TTL High-level output voltage	I _{OH} = -100 μA	2.4	V_{DD}	V				
V _{OL}	TTL Low-level output voltage	I _{OL} = 100 μA	GND	0.4	V				

SWITCHING CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
TMDS D	IFFERENTIAL PINS (Y/Z)		·			
t _{PLH}	Propagation delay time, low-to-high-level output		400	650	900	ps
t _{PHL}	Propagation delay time, high-to-low-level output		400	650	900	ps
t _r	Differential output signal rise time (20% - 80%)		60	80	140	ps
t _f	Differential output signal fall time (20% - 80%)	See Figure 2, $AV_{CC} = 3.3 V$,	60	80	140	ps
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH}) ⁽³⁾	$R_T = 50 \Omega$, PRE = 0 V		6	20	ps
t _{sk(D)}	Intra-pair differential skew, see Figure 4			20	40	ps
t _{sk(o)}	Inter-pair channel-to-channel output skew ⁽⁴⁾			30	65	ps
t _{sk(pp)}	Part-to-part skew ⁽⁵⁾				510	ps
t _{jit(pp)}	Peak-to-peak output jitter from Yj/Zj(1) residual jitter	See Figure 5,		8	20	ps
t _{jit(pp)}	Peak-to-peak output jitter from Yj/Zj(2:4) residual jitter	Am/Bm(1) = 250 MHz clock, Am/Bm(2:4) = 2.5 Gbps HDMI pattern		60	80	ps
t _{SX}	Select to switch output			50	70	ns
t _{en}	Enable time	See Figure 6, 10-mA Current source to the input		170	250	ns
t _{dis}	Disable time			9	15	ns
t _{pd(DDC)}	Propagation delay from SCLn to SCL_SINK or SDAn to SDA_SINK or SDA_SINK to SDAn			8	15	ns
t _{sx(DDC)}	Switch time from SCLn to SCL_SINK	See Figure 7, $C_1 = 10 \text{ pF}$		8	15	ns
t _{pd(HPD)}	Propagation delay (from HPD_SINK to the active port of HPD)			14	20	ns
t _{sx(HPD)}	Switch time from port select to the latest valid status of HPD]		33	50	ns

(1) Measurements are made with the Agilent 81250 ParBert System with a N4872A generator (600 fs t_{JIT(CLK)}, 13 ps t_{JIT(pp)}) and a N4873A analyzer.

All typical values are at 25°C and with a 3.3-V supply. (2)

(3)

 $t_{sk(p)}$ is the magnitude of the time difference between t_{PLH} and t_{PHL} of a specified terminal. $t_{sk(o)}$ is the magnitude of the difference in propagation delay times between any specified terminals of a sink-port bank when inputs of (4) the active source port are tied together.

(5) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same source, the same supply voltages, at the same temperature, and have identical packages and test circuits.

TEXAS INSTRUMENTS

www.ti.com

SLLS840B-MAY 2007-REVISED JULY 2011

PARAMETER MEASUREMENT INFORMATION

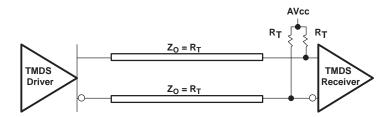
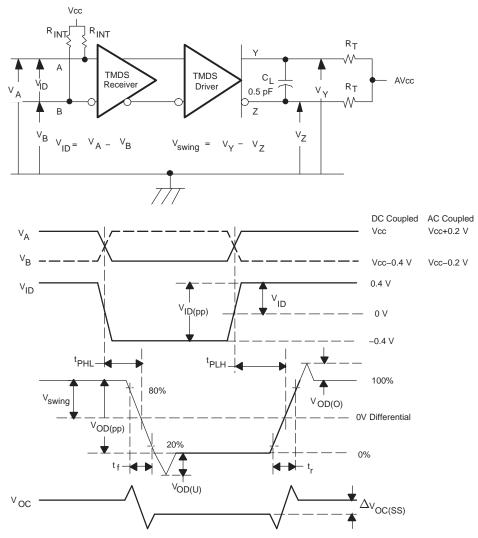



Figure 1. Termination for TMDS Output Driver

NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or t_f < 100 ps, 100 MHz from Agilent 81250. C_L includes instrumentation and fixture capacitance within 0.06 m of the D.U.T. Measurement equipment provides a bandwidth of 20 GHz minimum.

Figure 2. Timing Test Circuit and Definitions

SLLS840B-MAY 2007-REVISED JULY 2011

PARAMETER MEASUREMENT INFORMATION (continued)

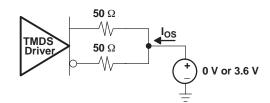


Figure 3. Short Circuit Output Current Test Circuit

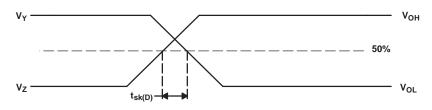
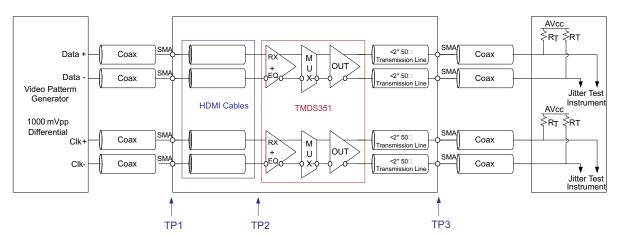
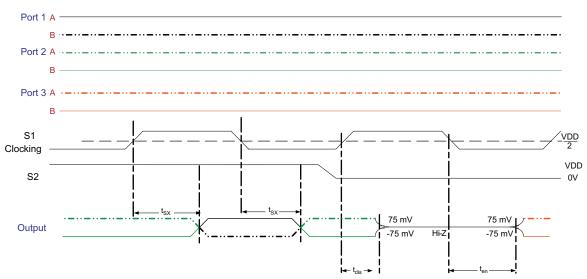



Figure 4. Definition of Intra-Pair Differential Skew



- A. HDMI 1.3 compliant cable when EQ = Low, and 10m 28AWG input cable when EQ = High.
- B. All jitters are measured in BER of 10⁻⁹
- C. The residual jitter reflects the total jitter measured at the output of the DUT, TP3, subtract the total jitter from the signal generator, TP1

Figure 5. Jitter Test Circuit

EXAS STRUMENTS

SLLS840B-MAY 2007-REVISED JULY 2011

PARAMETER MEASUREMENT INFORMATION (continued)

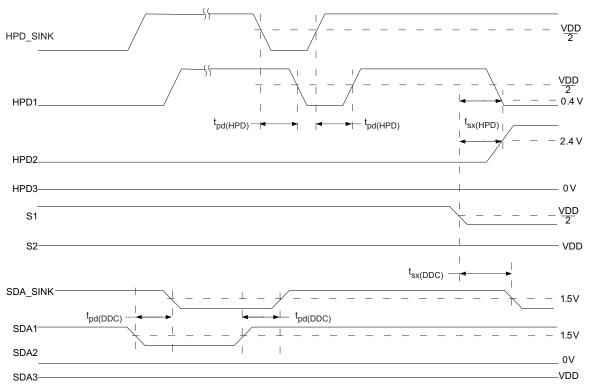


Figure 7. DDC and HPD Timing Definitions

www.ti.com

SLLS840B-MAY 2007-REVISED JULY 2011

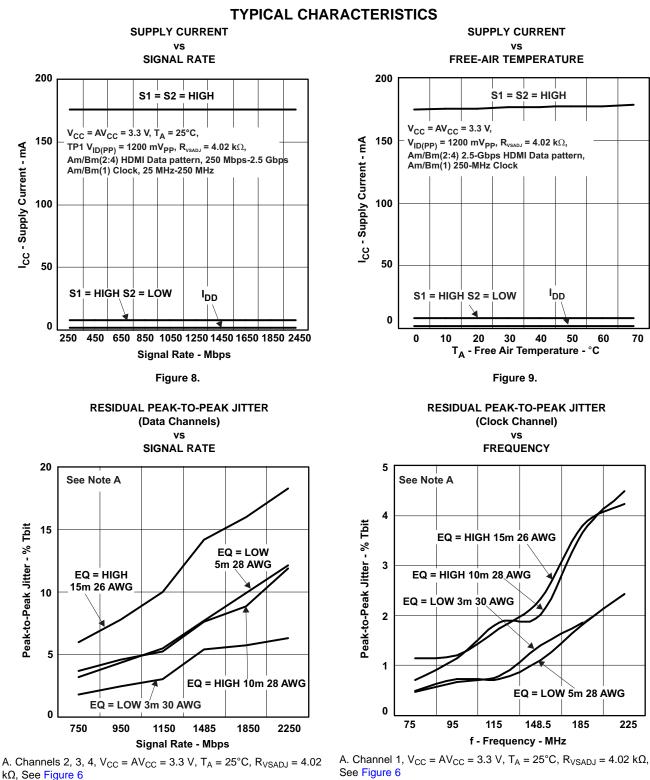
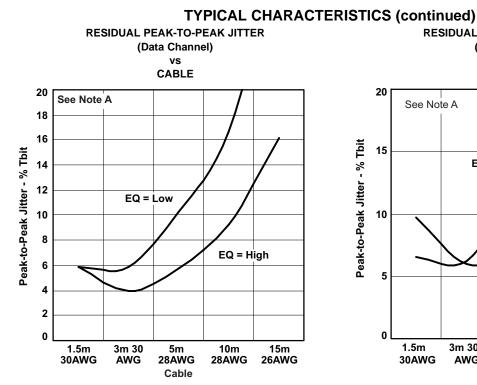
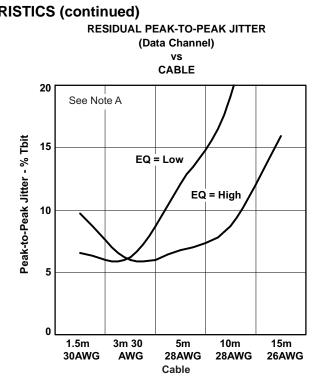



Figure 11.



SLLS840B-MAY 2007-REVISED JULY 2011

A. 1080p 10-Bit, V_{CC} = AV_{CC} = 3.3 V, T_A = 25°C, R_{VSADJ} = 4.02 kΩ, See Figure 6, Clock Channel = 185.6 MHz, Data Channel = 1.856 Gbps

Figure 12.

A. 1080p 12-Bit, V_{CC} = AV_{CC} = 3.3 V, T_A = 25°C, R_{VSADJ} = 4.02 kΩ, See Figure 6, Clock Channel = 222.8 MHz, Data Channel = 2.228 Gbps

Figure 13.

APPLICATION INFORMATION

Supply Voltage

The TMDS351 is powered up with two different power sources. One is 3.3-V V_{CC} for the TMDS circuitry, and the other is 5-V V_{DD} for HPD, DDC, and most of the control logic. It is recommended to provide the same 3.3-V power source to the TMDS circuitry of the TMDS351 and its output termination voltage. This minimizes the leakage current from the ESD protection circuitry. When the digital television (DTV) is in standby mode operation, the same common 3.3-V power source can be turned on or off. Either way will minimize the leakage current in the device, and in the receiver connected at the output where the termination is integrated.

TMDS Inputs

Selectable frequency response equalization circuitries are provided to all twelve differential input to support short range and long range cable connections. The frequency response compensation curves and target cable losses are shown in Figure 14 and Figure 15.

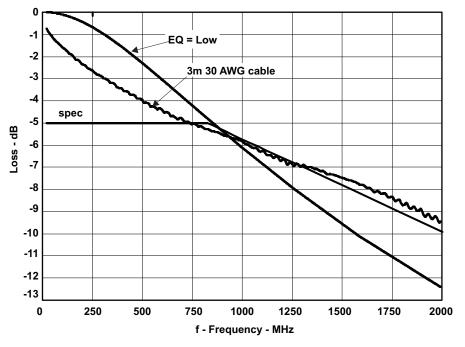


Figure 14. Frequency Response Compensation Curve at EQ = L

TEXAS INSTRUMENTS

SLLS840B – MAY 2007 – REVISED JULY 2011

www.ti.com

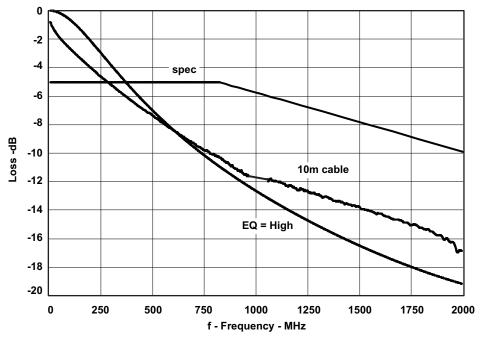


Figure 15. Frequency Response Compensation Curve at EQ = H

Internal termination circuitry which can be switched on or off, provides $50-\Omega$ resistance to each differential input pin when a port is selected. External terminations are not required. When the termination is switched on, current will flow to the TMDS driver. When a port is not selected, the termination is open. This stops supply current flowing from the input pins of the un-selected ports. This switchable termination provides the connected HDMI source another method of determining the sink port status, and whether it is selected or not selected, without referring to the HPD pin status.

TMDS Input Fail-Safe

The TMDS input does not incorporate a fail-safe circuit. To implement fail-safe, the input can be externally biased to prevent output oscillation. One pin can be pulled high to V_{CC} with the other grounded through a 1-k Ω resistor as shown in Figure 16.

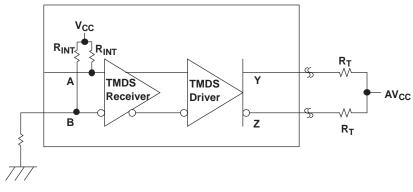


Figure 16. TMDS Input Fail-Safe Recommendation

TMDS Outputs

A 10% precision resistor, 4.02-k Ω , is recommended to control the output swing to the HDMI compliant 400 mV to 600 mV range (500 mV typical). The TMDS outputs are high impedance under standby mode operation, S1 = H and S2 = L.

HPD Pins

The HPD circuits are powered by the 5-V supply. They provide 5-V TTL output signals to the SOURCE with a typical 1-k Ω output resistance. An external 1-k Ω resistor is not needed here. The HPD output of the selected source port follows the logic level of the HPD SINK input. Unselected HPD outputs are kept low. When the device is in standby mode, all HPD outputs follow HPD SINK. A 1-k Ω resistor to ground keeps all HPD outputs low in standby mode if a fixed low state is preferred.

DDC Channels

The DDC circuits (SDA, SCL) are powered by a 5-V supply. The I/O pins can connect to the 5-V termination voltages directly. A 47-kΩ pull-up resistor to the 5 V is recommended on the SCL1, SCL2, and SCL3 pins. There is no pull-up resistor on the SDA pins. The pull-up resistor can be replaced with a different value.

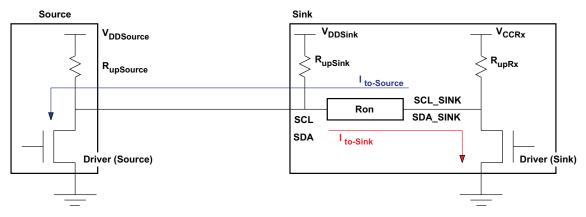


Figure 17. Simplified Electrical Circuit Model for DDC Channel

In Figure 17, when the Driver (Sink) pulls the bus low, the highest voltage level is Vol(Sink)max. The current flow through the pass-gate resistor can be presented as:

$$Ito - Sink = \frac{V_{dd} - V_{ol(Sink)max}}{R_{upSource} \parallel R_{upSink}}$$
(1)

where the $V_{ddsource} = V_{ddsink} = V_{dd}$

To simplify the equation, Vol(Sink)max is set equal to 0 V to reach equation (2):

$$Ito - Sink = \frac{V_{dd}}{R_{upSource} \parallel R_{upSink}}$$
(2)

The voltage at the input of the SINK is Ito - Sink × Ron + V_{ol(Sink)max}, which should be lower than the minimum input low threshold voltage of the Driver (Source), V_{ith(Source)min} to keep the bus in correct interoperations. $V_{ith(Source)min} > Ito - Sink \times Ron + V_{ol(Sink)max}$

By combining equations (2) and (3), the minimum pull-up resistor at the Sink input is:

$$R_{upSink} \ge \frac{V_{dd} \times Ron \times R_{upSource}}{(V_{ith(Source)min} - V_{ol(Sink)max}) \times R_{upSource} - V_{dd} \times Ron}$$
(4)

Applying the same methodology to calculate the pull-up resistor at the input of the Driver (Sink), the minimum pull-up resistor is:

$$R_{upRx} \ge \frac{V_{ccRx} \times Ron}{(V_{ith(Sink)min} - V_{ol(Source)max})}$$
(5)

The data sheet V_{PASS} specification ensures the maximum output voltage is clamped at 3.6 V to support a 3.3-V connection. Resistors pulling up to 3.3 V on SCL_SINK and SDA_SINK ensure the high level does not exceed the 3.3-V termination voltage.

Copyright © 2007-2011, Texas Instruments Incorporated

(3)

Layout Considerations

The high-speed differential TMDS inputs are the most critical paths for the TMDS351. There are several considerations to minimize discontinuities on these transmission lines between the connectors and the device:

- Maintain 100- Ω differential transmission line impedance into and out of the TMDS351
- Keep an uninterrupted ground plane beneath the high-speed I/Os
- Keep the ground-path vias to the device as close as possible to allow the shortest return current path
- Keep the trace lengths of the TMDS signals between connector and device as short as possible

Using the TMDS351 in Systems with Different CEC Link Requirements

The TMDS351 supports a DTV with up to three HDMI inputs when used in conjunction with a signal-port HDMI receiver or four HDMI inputs when used in conjunction with a dual-port HDMI receiver. Figure 18 and Figure 19 show simplified application block diagrams for the TMDS351 in different DTVs with different consumer electronic control (CEC) requirements. The CEC is an optional feature of the HDMI interface for centralizing and simplifying user control instructions from multiple audio/video products in an inter-connected system, even when all the audio/video products are from different manufacturers. This feature minimizes the number of remote controls in a system, as well as reducing the number of times buttons need to be pressed.

A DTV Supporting a Passive CEC Link

In Figure 18, the DTV does not have the capability of handling CEC signals, but allows CEC signals to pass over the CEC bus. The source selection is done by the control command of the DTV. The user cannot force the command from any audio/video product on the CEC bus. The selected source reads the E-EDID data after receiving an asserted HPD signal. The micro-controller loads different CEC physical addresses while changing the source by means of the S1 and S2 pins.

E-EDID Reading Configurations in Standby Mode

When the DTV system is in standby mode, the sources will not read the E-EDID memory because the $1-k\Omega$ pull-down resistor keeping the HPD_SINK input at logic low forces all HPD pins to output logic low to all sources. The source will not read the E-EDID data with a low on HPD signal. However, if reading the E-EDID data in the system standby mode is preferred, then TMDS351 can still support this need.

The recommended configuration sequences are:

- 1. Apply the same 3.3-V power to the V_{CC} of TMDS351 and the TMDS line termination at the HDMI receiver
- 2. Turn off V_{CC} , and keep V_{DD} on. The TMDS circuit is off, but the HPD, the DDC and the source selection circuits are active.
- 3. Set S1 and S2 to select the source port which is allowed to read the E-EDID memory.

Please note if the source has a time-out limitation between the 5 V and the HPD signals, the above configuration is not applicable. Uses individual EEPROMs assigned for each input port, see Figure 19. The solution uses E-EDID data to be readable during system power off or standby mode operations.

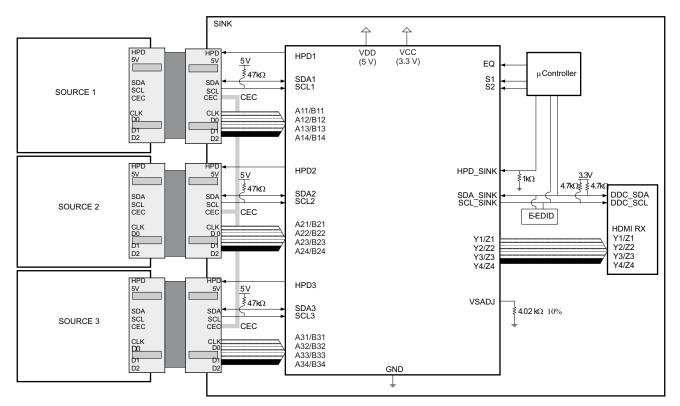


Figure 18. Three-Port HDMI Enabled DTV with TMDS351 – CEC Commands Passing Through

A DTV Supporting an Active CEC Link

In Figure 19, the CEC PHY and CEC LOGIC functions are added. The DTV can initiate and/or react to CEC signals from its remote control or other audio/video products on the same CEC bus. All sources must have their own CEC physical address to support the full functionality of the CEC link.

A source reads its CEC physical address stored its E-EDID memory after receiving a logic-high from the HPD feedback. When HPD is high, the sink-assigned CEC physical address should be maintained. Otherwise, when HPD is low the source sets CEC physical address value to (F.F.F.F).

Case 1 – AC Coupled Source (See Figure 19, Port 1)

When the source TMDS lines are AC coupled or when the source cannot detect the TMDS termination provided in the connected sink, the indication of the source selection can only come from the HPD signal. The TMDS351 HPD1 pin should be applied directly as the HPD signal back to the source.

Case 2 – DC Coupled Source (See Figure 19, Port 2)

When the source TMDS lines are DC coupled, there are two methods to inform the source that it is the active source to the sink. One is checking the HPD signal from the sink, and the other is checking the termination condition in the sink.

In a full CEC operation mode, the HPD signal is set high whether the port is selected or not. The source loads and maintains the CEC physical address when HPD is high. As soon as HPD goes low, the source loses the CEC physical address. To keep the CEC physical address to the source, the HPD signal is looping back from the source provided 5-V signal through a 1-k Ω pull-up resistor in the sink. This method is acceptable in application where the HDMI transmitter can detect the receiver termination by current sensing, and the receiver has switchable termination on the TMDS inputs. The internal termination resistors are connected to the termination voltage when the port is selected, or they are disconnected when the port is not selected. The TMDS351 features switchable termination on the TMDS inputs.

www.ti.com

Case 3 – External Logic Control for HPD (See Figure 19, Port 3)

When the HDMI transmitter does not have the capability of detecting the receiver termination, using the HPD signal as a reference for sensing port selections is the only possible method. External control logic for switching the connections of the HPD signals between the HPD pins of the TMDS351 and the 5-V signal from the source provides a good solution.

E-EDID Reading Configurations in Standby Mode

When the TMDS351 is in standby mode operation, S1 = H and S2 = L, all sources can read their E-EDID memories simultaneously with all HPD pins following HPD_SINK in logic-high. HPD_SINK input low will prevent E-EDID reading in standby mode operation.

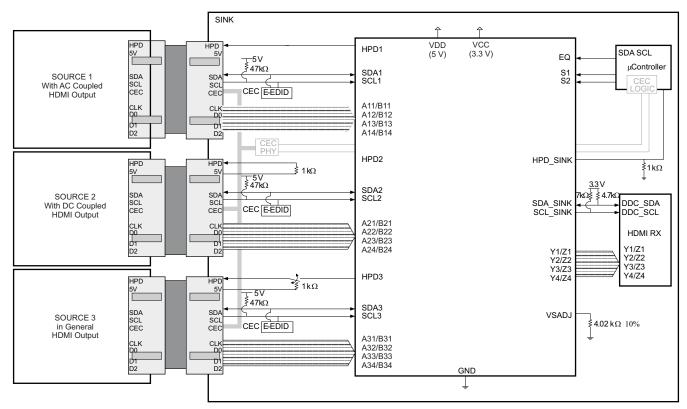


Figure 19. Three-Port HDMI Enabled DTV with TMDS351 – CEC Commands Active

SLLS840B-MAY 2007-REVISED JULY 2011

REVISION HISTORY

Changes from Original (May 2007) to Revision A	Page
Changed Figure 6	
Changed From: Figure 19 To: Figure 18	
Changed From: Figure 18 To: Figure 19	
Changes from Revision A (August 2007) to Revision B	Page
Added Junction Temperature to the THERMAL CHARACTERISTICS table	

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TMDS351PAG	ACTIVE	TQFP	PAG	64	160	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS351	Samples
TMDS351PAGR	ACTIVE	TQFP	PAG	64	1500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	TMDS351	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

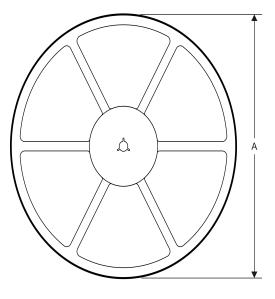
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

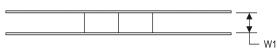
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

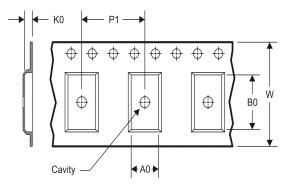
10-Jun-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

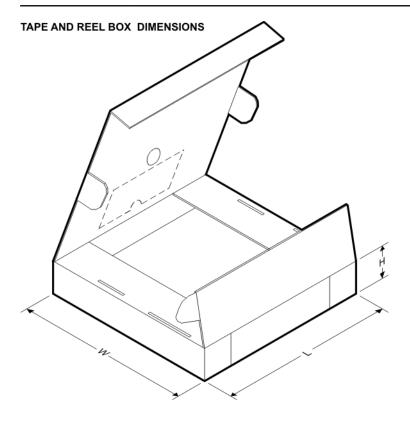
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMDS351PAGR	TQFP	PAG	64	1500	330.0	24.4	13.0	13.0	1.5	16.0	24.0	Q2

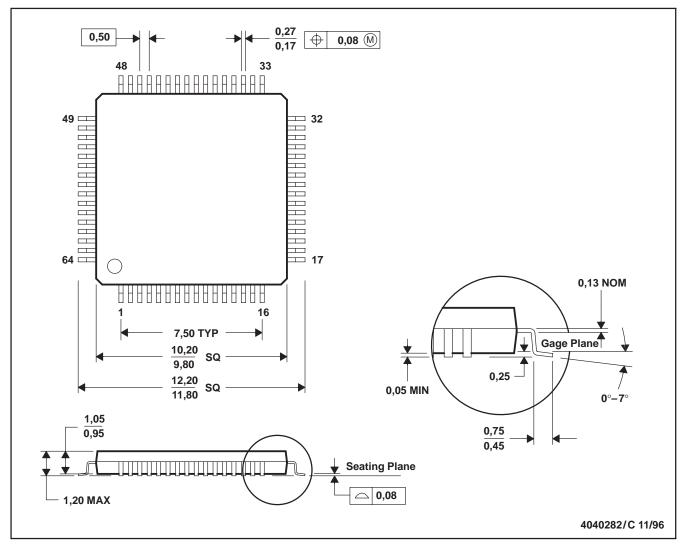
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

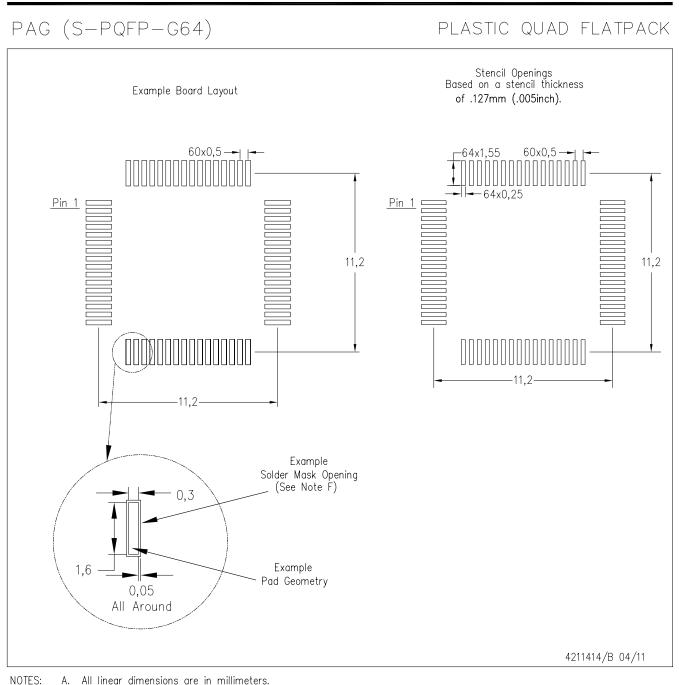

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TMDS351PAGR	TQFP	PAG	64	1500	367.0	367.0	45.0	

MECHANICAL DATA

MTQF006A - JANUARY 1995 - REVISED DECEMBER 1996

PAG (S-PQFP-G64)

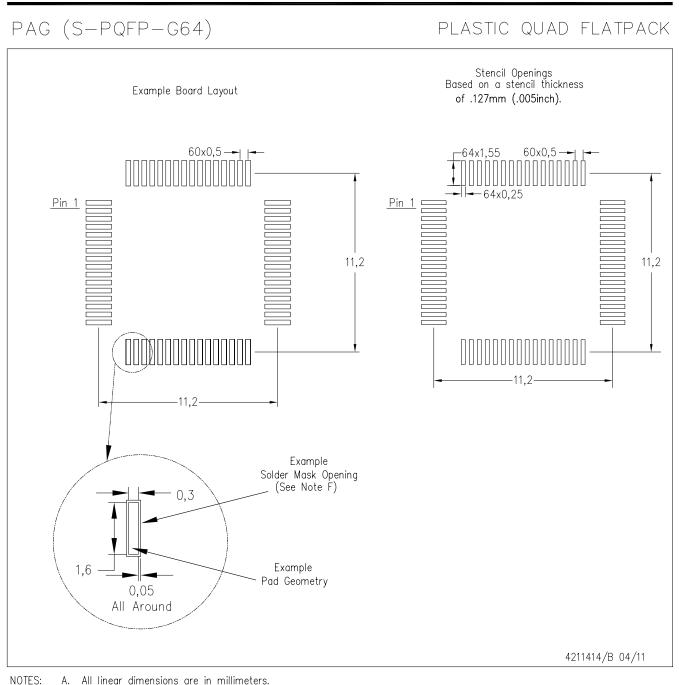
PLASTIC QUAD FLATPACK


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

LAND PATTERN DATA



A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

LAND PATTERN DATA

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated