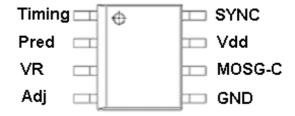
Rev	Date	ECN No.	Author	Description
1.0 2.0 3.0 4.0	08/29/2012 10/29/2012 12/05/2012	PEN-1208-003 PEN-1212-002	Sandra Hu Sandra Hu Sandra Hu	Original 1. Change Package outline Drawing. 1. Modify Iout from 1A to 2A. 1. Modify Pin Description. 2. Updatd Vdd on and Vslth specificastion. 3. Add VMOS-G.VR.Vtiming. 4. Modify Waveform and Performance Characteristics(Figure 1, 2, 3, 5 and 6).
Title	1	1	I	

Title

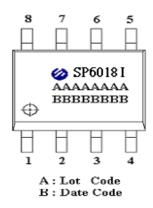
SP6018 Datasheet

DESCRIPTION

The fundamental of SP6018 synchronous rectifier (SR) driver IC is based on our U.S. patented methods that utilize the principle of "prediction" logic circuit. The IC deliberates previous cycle timing to control the SR in present cycle by "predictive" algorithm that makes adjustments to the turn-off time, in order to achieve maximum efficiency and avoid cross-conduction at the same time. Specially, SP6018 is designed for Resonance. It also maintains the MOSFET's body diode conduction at minimum level. The SP6018 is capable to adapt in almost all existing Resonance converters with few adjustments considered necessary.

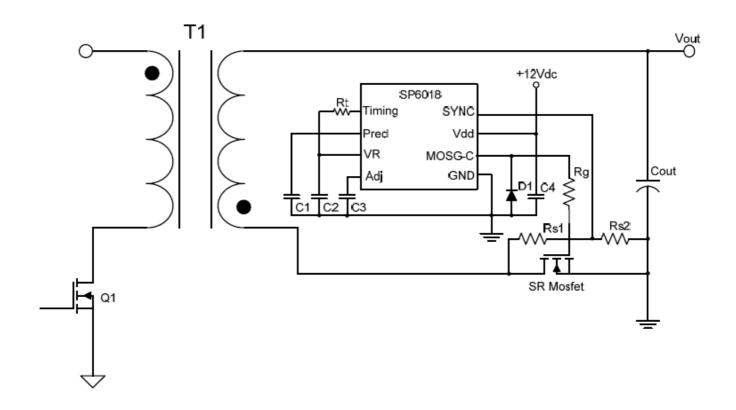

FEATURES

- Offers efficiency improvement over Schottky Diode (depends on drive configuration of the SR).
- Drives all logic level Power MOSFET.
- Prediction gate timing control.
- Minimum MOSFET body diode conduction.
- Operating frequency up to 400 KHz.
- Synchronize to transformer secondary voltage waveform.


APPLICATIONS

- Servers & workstations
- Storage area network power supplies
- Telecommunication converters
- Embedded systems
- Industrial & commercial systems using high current processors

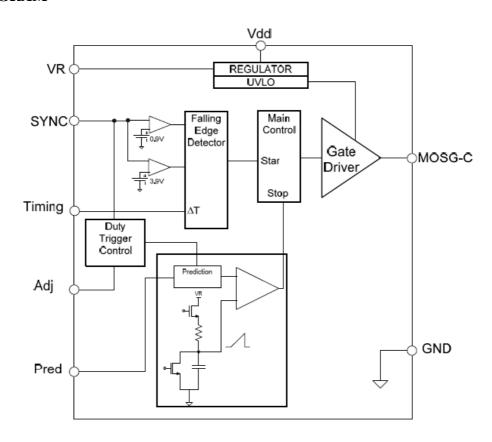
PIN CONFIGURATION (SOP-8)



PART MARKING

2012/12/05 **Ver.4**

TYPICAL APPLCATION CIRCUIT



PIN DESCRIPTION

Pin	Symbol	Description	
1	Timing	Discontinuous current filter timing adjustment resistor connection.	
2	Pred	Capacitor to store previous cycle timing for SR MOSFET.	
3	VR	Voltage Regulator.	
4	Adj	Trigger point adjustment for Dynamic state.	
5	GND	Ground connection.	
6	MOSG-C	Catch MOSFET gate drive.	
7	Vdd	DC supply voltage.	
8	SYNC	Synchronized signal from the V _{DS} of SR MOSFET.	

2012/12/05 **Ver.4** Page 3

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Package	Part Marking
SP6018S8RGB	SOP-8	SP6018 I
SP6018S8TGB	SOP-8	SP6018 I

※ SP6018S8RGB : Tape Reel ; Pb − Free ; Halogen - Free

※ SP6018S8TGB: Tube; Pb − Free; Halogen - Free

ABSOULTE MAXIMUM RATINGS (TA=25°C, unless otherwise specified.)

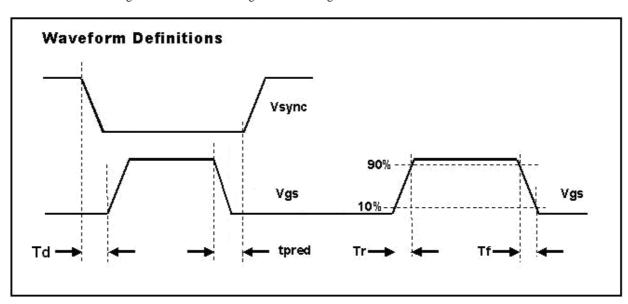
The following ratings designate persistent limits beyond which damage to the device may occur.

Symbol	Parameter	Value	Unit
V_{dd}	DC Supply Voltage	16	V
VMOS-G	Output Voltage	16	V
VR	Voltage Regulator	-0.3~8	V
VTiming/pred/Adj/syne	Timing/Pred/Adj/Sync Voltage	-0.3~6	V
I_{OUT}	Peak Source Current (Pulsed)	2.0	A
	Peak Sink Current (Pulsed)	2.0	A
P_{D}	Power Dissipation @ $T_A=85^{\circ}C$ (*)	0.25	W
T_{J}	Operating Junction Temperature Range	-40 to125	$^{\circ}\!\mathbb{C}$
T_{STG}	Storage Temperature Range	-40 to 150	$\mathbb{O}_{\!\!\!\!\circ}$
T_{LEAD}	Lead Soldering Temperature for 5 sec.	260	$^{\circ}\!\mathbb{C}$

2012/12/05 **Ver.4** Page 4

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
Rөjc	Thermal Resistance Junction – Case (*)	45	°C/W


^(*) The power dissipation and thermal resistance are evaluated under copper board mounted with free air conditions.

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}\text{C}, V_{dd}=12\text{V}, \text{Freq.} =300 \text{ KHz}, \text{Duty Cycle}=50\%, \text{unless otherwise specified.})$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
SUPPLY IN	PUT					
IDD	Summits assument	No load		4	7	mA
IDD	Supply current	V _{SYNC} =0V, No load		5	8	mA
Vdd	Supply voltage	Idd peak < 2A			16	V
Vdd on	Enable voltage		9.4	10.0	10.5	V
SYNC REF	ERENCE (SYNC)					
Vshth	SYNC high threshold			3.9		V
Vslth	SYNC low threshold			0.9		V
Vsync	SYNC clamp voltage	Isync=3mA		5		
Isync	SYNC input current				3	mA
Voltage Reg	ulator REFERENCE (VR)					
Ivr	VR Output Current				20	mA
ON TIME I	OUTY SETUP (PIN 6)					
Ton-time				20		us
MOSFET G	SATE DRIVER (MOSG-C)					
Voh	Output high voltage	Io = -200mA	10.5	11.0		V
Vol	Output low voltage	Io = 200mA		0.5	0.8	V
Td	Propagation delay	No load	50	80		ns
Tpred		No load		120		ns
Tr	Rise time	Load = 1nF(*)		10	25	ns
Tf	Fall time	Load = 1nF(*)		10	25	ns
Dynamic Pr	otect					
Dt	Dynamic variable	Pin 4 open		600		ns
Ton-min	MOSG-C on time	PWM adjusts time > Dt		1		us

^(*) Tr & Tf are measured among 10% and 90% of starting and final voltage.

2012/12/05 **Ver.4** Page 5

PERFORMANCE CHARACTERISTICS (T_A=25°C, unless otherwise specified.)

Figure 1: Supply Current vs Supply Voltage

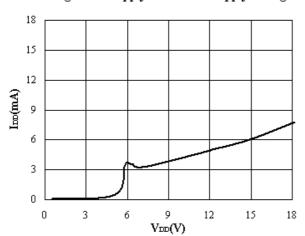
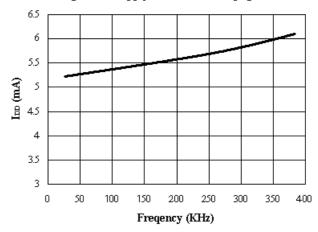
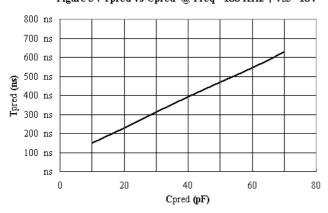
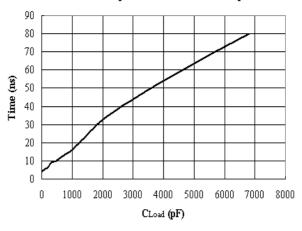
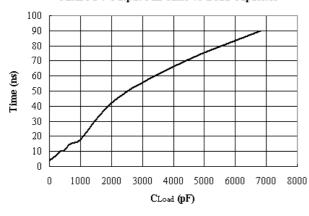
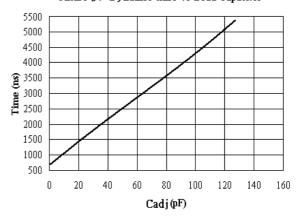


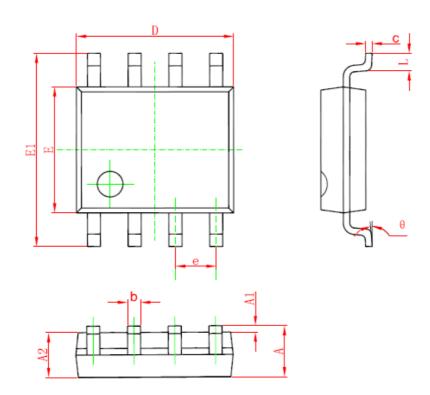
Figure 2 : Supply Current vs Freq. @ No Load


Figure 3 : Tpred vs Cpred @ Freq =100 KHz ; V_{DD} =10V


Fihure 4: Output Rise Time vs Load Capacitor

Fihure 5: Output Fall Time vs Load Capacitor


Fihure 6: Dynamic time vs Load Capacitor

*Fig. 1 : No Load; No SYNC *Fig. 4~5 : Frequency = 65 kHz.

SOP- 8 PACKAGE OUTLINE

Comban	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
А	1. 350	1. 750	0.053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
Е	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
e	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

2012/12/05 **Ver.4**

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties, which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation
©2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178
Fay: 886-2-2655-8468

Fax: 886-2-2655-8468 http://www.syncpower.com