NGTB50N65S1WG

Product Preview

IGBT - Inverter Welding

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for welding applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

Features

- $\mathrm{T}_{\text {Jmax }}=175^{\circ} \mathrm{C}$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Welding

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	$\mathrm{V}_{\mathrm{CES}}$	650	V
$\begin{array}{c}\text { Collector current } \\ @ \mathrm{TC}=25^{\circ} \mathrm{C} \\ @ \mathrm{TC}=100^{\circ} \mathrm{C}\end{array}$	I_{C}	140	A
$\begin{array}{c}\text { Diode Forward Current } \\ @ \mathrm{TC}=25^{\circ} \mathrm{C} \\ @ \mathrm{TC}=100^{\circ} \mathrm{C}\end{array}$		I_{F}	140
50			
50			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G}=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB50N65S1WG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{\text {өJC }}$	0.50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-case, for Diode	$R_{\text {өJC }}$	1.00	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-ambient	$R_{\text {өJA }}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {(BR)CES }}$	650	-	-	V
Collector-emitter saturation voltage	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {CEsat }}$	1.50	$\begin{aligned} & \hline 2.1 \\ & 2.8 \end{aligned}$	2.45	V
Gate-emitter threshold voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=350 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GE}(\text { (th) }}$	4.5	5.5	6.5	V
Collector-emitter cut-off current, gateemitter short-circuited	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=650 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=650 \mathrm{~V}, \mathrm{~T}_{J=175^{\circ} \mathrm{C}} \end{gathered}$	ICES	-	3.5	0.5	mA
Gate leakage current, collector-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$	IGES	-	-	100	nA

DYNAMIC CHARACTERISTIC

Input capacitance	$\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ies }}$	-	3080	-	pF
Output capacitance		$\mathrm{C}_{\text {oes }}$	-	149	-	
Reverse transfer capacitance		$\mathrm{C}_{\text {res }}$	-	88	-	
Gate charge total	$\mathrm{V}_{\mathrm{CE}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	Q_{g}	-	128	-	nC
Gate to emitter charge		Q_{ge}	-	30	-	
Gate to collector charge		Q_{gc}	-	69	-	

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\text {d(on) }}$	-	75	-	ns
Rise time		tr_{r}	-	46	-	
Turn-off delay time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	128	-	
Fall time		t_{f}	-	68	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	1.25	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	0.53	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	1.78	-	
Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=175^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\mathrm{d}(\text { on) }}$	-	70	-	ns
Rise time		t_{r}	-	48	-	
Turn-off delay time		$\mathrm{t}_{\text {d(off) }}$	-	135	-	
Fall time		t_{f}	-	93	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	1.75	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	0.92	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	2.67	-	

DIODE CHARACTERISTIC

Forward voltage	$\begin{gathered} V_{G E}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	V_{F}	1.50	$\begin{gathered} 2.65 \\ 2.8 \end{gathered}$	3.25	V
Reverse recovery time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V} \\ \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	t_{rr}	-	70	-	ns
Reverse recovery charge		Q_{rr}	-	450	-	nC
Reverse recovery current		$\mathrm{I}_{\text {rrm }}$	-	11	-	A
Reverse recovery time	$\begin{gathered} T_{J}=175^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V} \\ \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	t_{rr}	-	120	-	ns
Reverse recovery charge		Q_{rr}	-	1.27	-	$\mu \mathrm{C}$
Reverse recovery current		$\mathrm{I}_{\text {rrm }}$	-	17	-	A

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NGTB50N65S1WG

TYPICAL CHARACTERISTICS

Figure 1. Output Characteristics

Figure 3. Output Characteristics

Figure 5. Typical Transfer Characteristics

Figure 2. Output Characteristics

Figure 4. Output Characteristics

Figure 6. $\mathrm{V}_{\mathrm{CE}(\text { sat })} \mathrm{vs} . \mathrm{T}_{\mathbf{J}}$

Figure 7. Typical Capacitance

Figure 9. Typical Gate Charge

Figure 11. Switching Time vs. Temperature

Figure 8. Diode Forward Characteristics

Figure 10. Switching Loss vs. Temperature

Figure 12. Switching Loss vs. IC

TYPICAL CHARACTERISTICS

Figure 13. Switching Time vs. IC

Figure 15. Switching Time vs. $\mathbf{R}_{\mathbf{G}}$

Figure 17. Switching Time vs. $\mathrm{V}_{\text {CE }}$

Figure 14. Switching Loss vs. R_{G}

Figure 16. Switching Loss vs. V_{CE}

Figure 18. Safe Operating Area

NGTB50N65S1WG

TYPICAL CHARACTERISTICS

Figure 19. Reverse Bias Safe Operating Area

Figure 21. Q_{rr} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Figure 20. $\mathrm{t}_{\mathrm{rr}} \mathrm{vs}$. $\mathrm{di}_{\mathrm{F}} / \mathbf{d t}$

Figure 22. I_{rm} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Figure 23. V_{F} vs. T_{J}

TYPICAL CHARACTERISTICS

Figure 24. Collector Current vs. Switching Frequency

Figure 25. IGBT Transient Thermal Impedance

Figure 26. Diode Transient Thermal Impedance

NGTB50N65S1WG

Figure 27. Test Circuit for Switching Characteristics

Figure 28. Definition of Turn On Waveform

Figure 29. Definition of Turn Off Waveform

NGTB50N65S1WG

PACKAGE DIMENSIONS

TO-247
CASE 340AL
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
2. SLOT REQUIRED, NOTCH MAY BE ROUNDED
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
4. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY 5. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED B 6. \varnothing P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO TH
TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91 . TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
5. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.

	MILLIMETERS	
DIM	MIN	MAX
A	4.70	5.30
A1	2.20	2.60
b	1.00	1.40
b2	1.65	2.35
b4	2.60	3.40
c	0.40	0.80
D	20.30	21.40
E	15.50	16.25
E2	4.32	5.49
e	5.45	BSC
L	19.80	20.80
L1	3.50	4.50
P	3.55	3.65
Q	5.40	6.20
S	6.15	BSC

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

