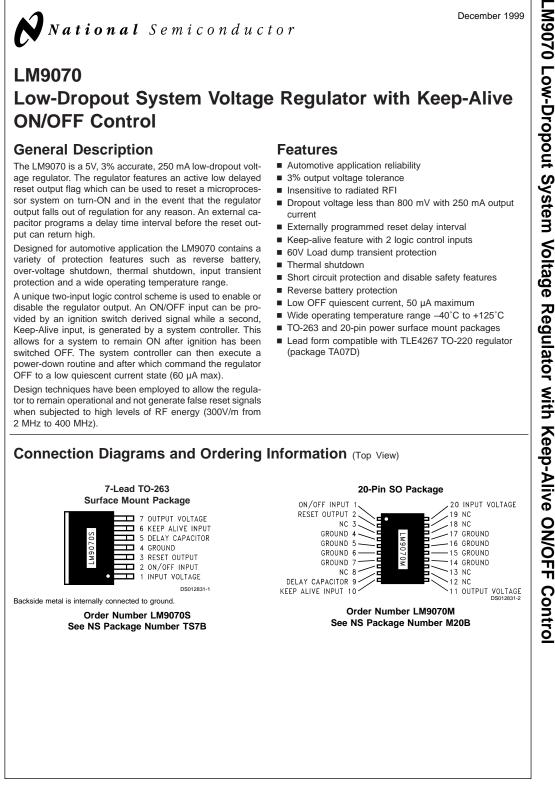
December 1999

National Semiconductor

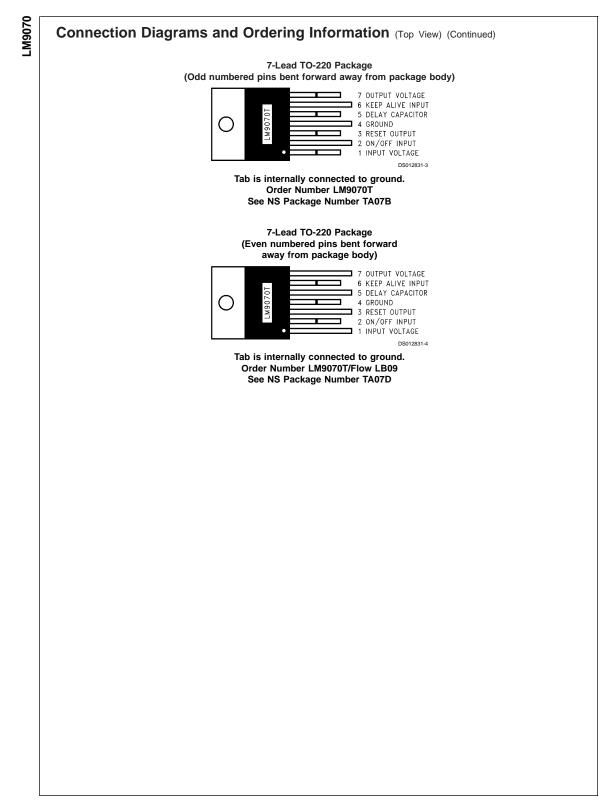
LM9070 Low-Dropout System Voltage Regulator with Keep-Alive **ON/OFF** Control

General Description

The LM9070 is a 5V, 3% accurate, 250 mA low-dropout voltage regulator. The regulator features an active low delayed reset output flag which can be used to reset a microprocessor system on turn-ON and in the event that the regulator output falls out of regulation for any reason. An external capacitor programs a delay time interval before the reset output can return high.


Designed for automotive application the LM9070 contains a variety of protection features such as reverse battery. over-voltage shutdown, thermal shutdown, input transient protection and a wide operating temperature range.

A unique two-input logic control scheme is used to enable or disable the regulator output. An ON/OFF input can be provided by an ignition switch derived signal while a second, Keep-Alive input, is generated by a system controller. This allows for a system to remain ON after ignition has been switched OFF. The system controller can then execute a power-down routine and after which command the regulator OFF to a low quiescent current state (60 µA max).


Design techniques have been employed to allow the regulator to remain operational and not generate false reset signals when subjected to high levels of RF energy (300V/m from 2 MHz to 400 MHz).

Features

- Automotive application reliability
- 3% output voltage tolerance
- Insensitive to radiated RFI
- Dropout voltage less than 800 mV with 250 mA output current
- Externally programmed reset delay interval
- Keep-alive feature with 2 logic control inputs
- 60V Load dump transient protection
- Thermal shutdown
- Short circuit protection and disable safety features
- Reverse battery protection
- Low OFF quiescent current, 50 µA maximum
- Wide operating temperature range -40°C to +125°C
- TO-263 and 20-pin power surface mount packages
- Lead form compatible with TLE4267 TO-220 regulator (package TA07D)

© 1999 National Semiconductor Corporation DS012831

Absolute Maximum Ratings (Note 1)

Input Voltage

-26V to +26V
60V
-50V
5 mA
Internally Limited
150°C
12 kV, 2 kV
260°C

Storage Temperature

Operating Ratings (Note 1)

–50°C to +150°C

LM9070

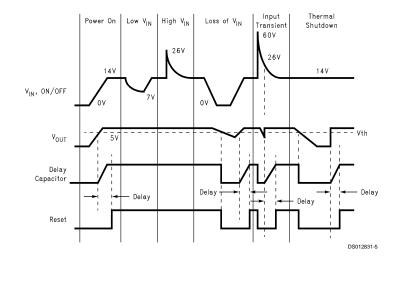
•	0	•	,	
Input Vo	ltage			6V to 26V
Ambient	Temperature		-40°C	C to +125°C
θjc, TO-2	220, TO-263 Pac	ckages		3°C/W
θja, TO-	220, TO-263 Pac	ckages		43°C/W
θj-pins, S	SO20 Package			25°C/W
θja, SO2	20 Package			85°C/W

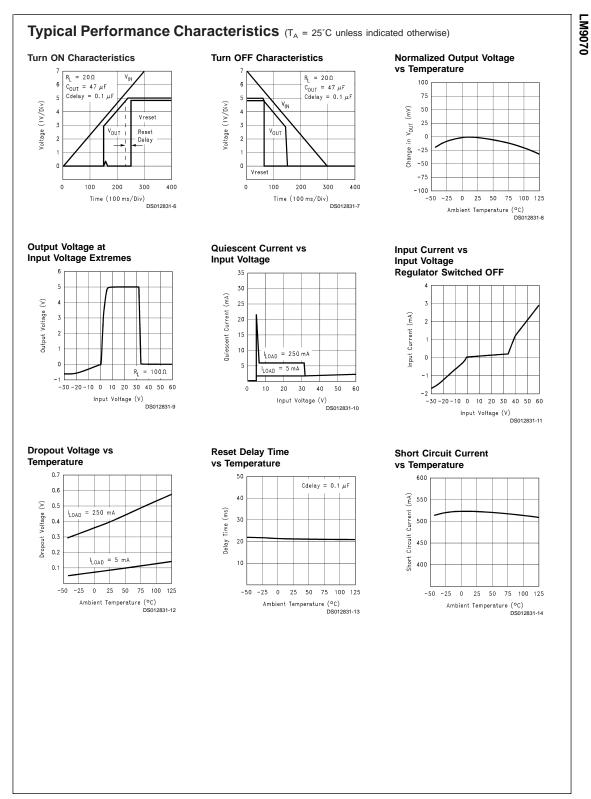
Electrical Characteristics

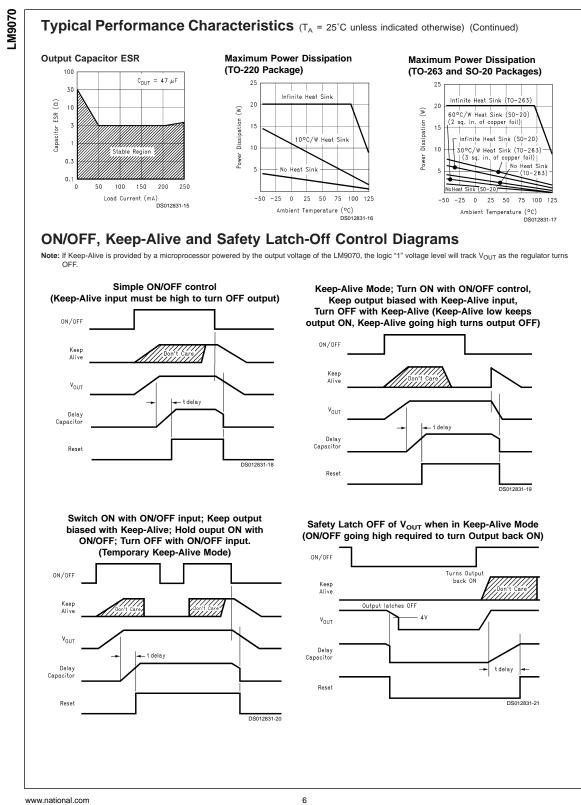
The following specifications apply for V_{CC}= 6V to 26V, -40°C $\leq T_A \leq$ 125°C, unless otherwise specified. C_{OUT}=47 µFd with an ESR < 3 Ω . C_{IN}= 1 µFd.

Symbol	Parameter	Conditions	Min	Max	Units
REGULATOR	OUTPUT				
V _{OUT}	Output Voltage	$5 \text{ mA} \le I_{OUT} \le 250 \text{ mA}$	4.85	5.15	V
ΔV_{OUT} Line	Line Regulation	I_{OUT} = 5 mA, 9V \leq V _{IN} \leq 16.5V		25	mV
		I_{OUT} = 5 mA, 6V \leq $V_{IN} \leq$ 26V		50	mV
ΔV_{OUT} Load	Load Regulation	V_{IN} = 14.4V, 5 mA \leq I_{OUT} \leq 250 mA		50	mV
lq	Quiescent Current $V_{ON/OFF} \leq V_{IN}$				
		I _{OUT} = 5 mA		4	mA
		$I_{OUT} = 250 \text{ mA}, V_{IN} \ge 8V$		25	mA
		$I_{OUT} = 5 \text{ mA}, V_{IN} = 5V$		10	mA
		$I_{OUT} = 250 \text{ mA}, V_{IN} = 6V$		50	mA
loff	OFF Quiescent Current	$V_{IN} \le 16.5V$, Regulator OFF			
		$-40^{\circ}C \le T_{J} \le 60^{\circ}C$		20	μΑ
		$60^{\circ}C \le T_{J} \le 135^{\circ}C$		60	μΑ
Vdo	Dropout Voltage	$I_{OUT} = 5 \text{ mA}$		300 800	mV mV
	Short Circuit Current	$I_{OUT} = 250 \text{ mA}$	0.4	1.5	A
		$R_{\rm L} = 1\Omega$	0.4	1.5	A
RR	Ripple Rejection	fripple = 120 Hz, Vripple = 1 Vrms			
		$I_{OUT} = 50 \text{ mA}$	60		dB
Voth _{OFF}	Safety V _{OUT} Latch-OFF Threshold	In Keep-Alive mode			
		$V_{ON/OFF} = 0V, V_{KA} = 0V$	4	4.5	V
OVthr	Overvoltage Shutdown Threshold	27			V
Vo Transient	V _{OUT} during Transients	V_{IN} Peak \leq 60V,		7	V
		$R_{L} = 100\Omega, \tau = 100 \text{ ms}$			
RESET OUTPU	-		1		
Vth	Threshold Voltage	ΔV_{OUT} Required to Generate a		500	
		Reset Output	-300	-500	mV
Vlow	Reset Output Low Voltage	$4.85V \le V_{OUT} \le 5.15V$ Isink = 1.6 mA, V _{OUT} > 3.2V		0.4	V
VIOW	Reset Output Low Voltage			0.4	v
Vhigh	Reset Output High Voltage	$1.4V \le V_{OUT} \le 3.2V$	0.9 V _{OUT}		V
		$Cdolow = 0.1 \mu Ed$	0.9 V _{OUT}	V _{оит} 31	
t _{delay}	Delay Time	Cdelay = 0.1 µFd			ms
I _{delay}	Charging Current for Cdelay		10	30	μA
Rpu	Internal Pull-up Resistance		12	80	kΩ
CONTROL LO		1	1	1	
V_{KA} low	Low Input Threshold Voltage, Keep-Alive Input	$3.5V \le V_{OUT} \le 5.25V$	0.3 V _{OUT}	0.5 V _{ОUT}	V

LM9070

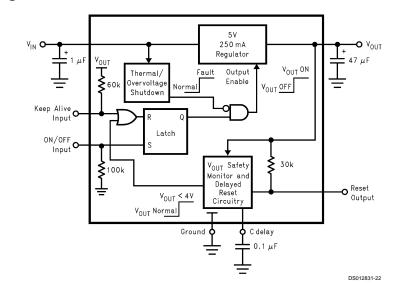

Electrical Characteristics (Continued)


The following specifications apply for V_{CC}= 6V to 26V, -40°C $\leq T_A \leq$ 125°C, unless otherwise specified. C_{OUT}=47 µFd with an ESR < 3 Ω . C_{IN}= 1 µFd.


Symbol	Parameter	Conditions	Min	Max	Units
CONTROL LO	GIC			•	
V_{KA} high	High Input Threshold Voltage, Keep-Alive Input	$3.5V \le V_{OUT} \le 5.25V$	0.6 V _{OUT}	0.8 V _{OUT}	V
V _{ON/OFF} low	Low Input Voltage, ON/OFF Input	Rseries = 1 kΩ	-2	2	V
V _{ON/OFF} high	High Input Voltage, ON/OFF Input	Rseries = 1 kΩ	4	26	V
I _{ON/OFF}	Input Current, ON/OFF Input	$V_{ON/OFF} \le 4V$		330	μA
		$4V < V_{ON/OFF} < 7V$		670	μA
		$V_{ON/OFF} \ge 7V$		10	mA
Rpu _{KA}	Internal Pull-up Resistance, Keep-Alive Input	$0V \le V_{IN} \le 26V$	20	100	kΩ
Rpd _{ON/OFF}	Internal Pull-down Resistance ON/OFF Input	$0V \le V_{ON/OFF} \le 26V$	50	210	kΩ

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and conditions, see the Electrical Characteristics. Note 2: All pins will survive an ESD impulse of $\pm 2000V$ using the human body model of 100 pF discharged through a 1.5 kΩ resistor. In addition, input pins V_{IN} and the ON/OFF input will withstand ten pulses of ± 12 kV from a 150 pF capacitor discharged through a 560Ω resistor with each pin bypassed with a 22 nF, 100V capacitor.

Reset Operation and Protection Features

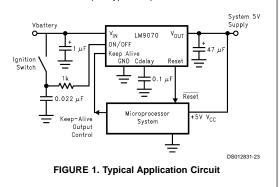


Control Logic Truth Table

ON/OFF Input	Keep-Alive Input	Output Voltage	Reset Output	Operating Condition
L	Х	0V	L	Low quiescent current standby (OFF) condition
Ŷ	Х	5V	↑ after delay	Output turns ON
Н	Х	5V	Н	Normal ON condition
\downarrow	Н	0V	L	Output turns OFF
\downarrow	L	5V	Н	Output kept ON by Keep-Alive Input
Ŷ	L	5V	Н	Output remains ON (or turns ON)
Н	Х	$\Delta V_{OUT} \ge -300 \text{ mV}$	L	Output pulled out of regulation, reset flag generated
L	L	$V_{OUT} \le 4V$	L	Output latches OFF

Block Diagram

Application Information


The LM9070 voltage regulator has been optimized for use in microprocessor based automotive systems. Several unique design features have been incorporated to address many FMEA (Failure Mode Effects Analysis) concerns for fail-safe system performance.

FAULT TOLERANT FEATURES

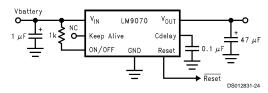
While not specifically guaranteed due to production testing limitations, the LM9070 has been tested and shown to continue to provide a regulated output and, not generate an erroneous system reset signal while subjected to high levels of RF electric field energy (up to 300 V/m signal strength over a 2 MHz to 400 MHz frequency range). This is very important in vehicle safety related applications where the system must continue to operate normally. To maintain this immunity to RFI the output bypass capacitor is important (47 μ F is recommended).

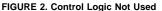
This regulator is suitable for applications where continuous connection to the battery is required (*Refer to the Typical Application Circuit*). ON/OFF control of the regulator and system can be accomplished by switching the ON/OFF input to the battery or ignition supply $V_{\rm IN}$ supply through a SPST

switch. If this input becomes open circuited, an internal pull-down resistor ensures that the regulator turns OFF. When the regulator is switched OFF the current load on the battery drops to less than 60 μA . With the possibility in many applications for V_{IN} and the ON/OFF input pins to be connected in a system through long lengths of wire, the ESD protection of these pins has been increased to 12 kV with the addition of small input bypass capacitors.

www.national.com

LM9070


LM9070


Application Information (Continued)

An output bypass capacitor of at least 10 μF is required for stability (47 μF is recommended). The ESR of this capacitor should be less than 3 Ω . An input capacitor of 1 μF or larger is recommended to improve line transient and noise performance.

With the Keep-Alive input, a system microprocessor has the ability to keep the regulator ON (with a logic "0" on Keep-Alive) after the ON/OFF input has been commanded OFF. A power-down sequence, when system variables are typically stored in programmable memory, can be executed and take as much time as necessary. At the end of the operation the micro then pulls Keep-Alive high and the regulator and system turn OFF and revert to the low quiescent current standby mode.

For additional system reliability, consideration has been made for the possibility of a short circuited load at the output of the regulator. When the regulator is switched ON, conventional current limiting and thermal shutdown protect the regulator. When the regulator is switched OFF however, a grounded $V_{\rm CC}$ supply to the micro (due to the shorted regulator output) will force the Keep-Alive input to be low and thus try to maintain the Keep-Alive mode of operation. With a shorted load, the drain on the battery could be as high as 1.5A. A separate internal circuit monitors the output voltage of the regulator. If $V_{\rm OUT}$ is less than 4V, as would be the case with a shorted load, the Keep-Alive function is logically disabled to ensure that the regulator turns OFF and reverts to only a 50 μ A load on the battery.

Conventional load dump protection is built in to withstand up to +60V and -50V transients. A 1 k Ω resistor in series with the ON/OFF and Keep-Alive inputs are recommended to provide the same level of transient protection for these pins if required. Protection against reverse polarity battery connections is also built in. With a reversed battery the output of the LM9070 will not go more negative than one diode drop below ground. This will prevent damage to any of the 5V load circuits.

For applications where the control logic is not required the logic pins should be configured as shown in *Figure 2*. A separate device, called the LM9071, can be used. The LM9071 is available in a 5-lead TO-220 package and does not provide control logic functions, but still retains all of the protection features of the LM9070.

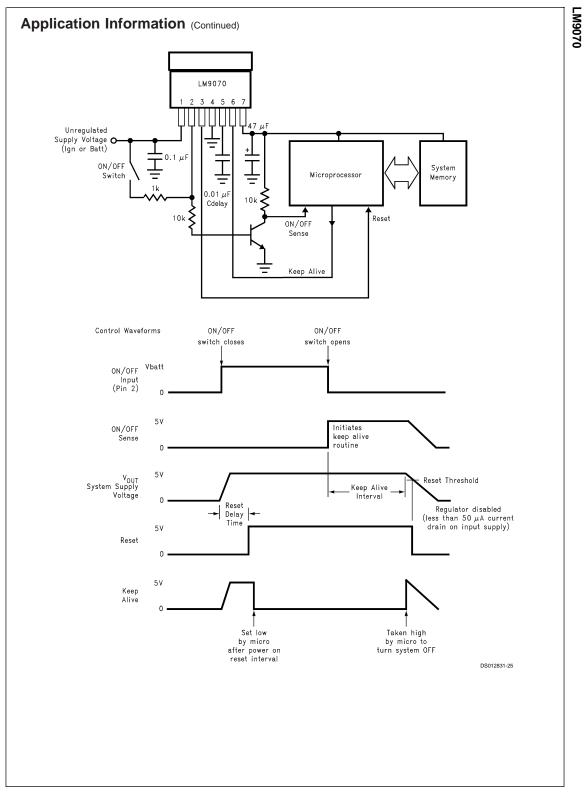
RESET FLAG

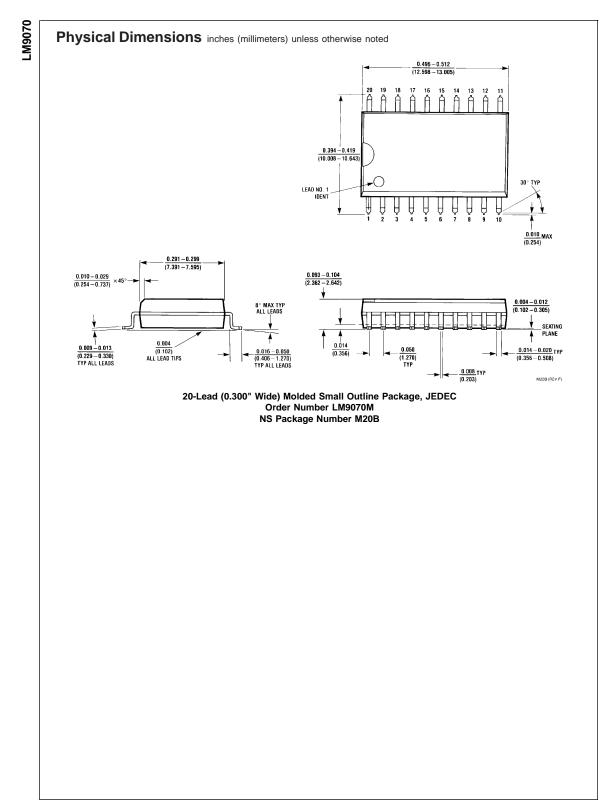
Excessive loading of the output to the point where the output voltage drops by 300 mV to 500 mV will signal a reset flag to the micro. This will warn of a $V_{\rm CC}$ supply that may produce unpredictable operation of the system. On power-up and recovery from a fault condition the delay capacitor is used to hold the micro in a reset condition for a programmable time interval to allow the system operating voltages and

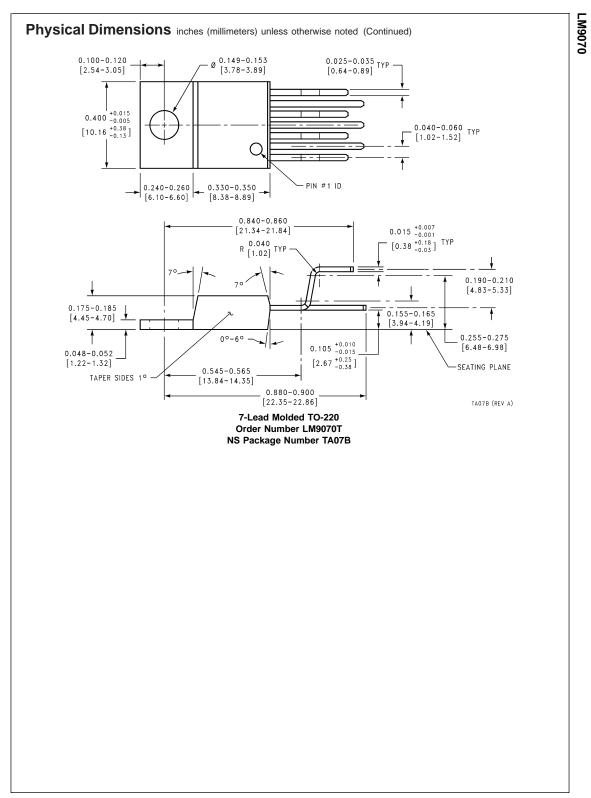
clock to stabilize before executing code. The typical delay time interval can be estimated using the following equation:

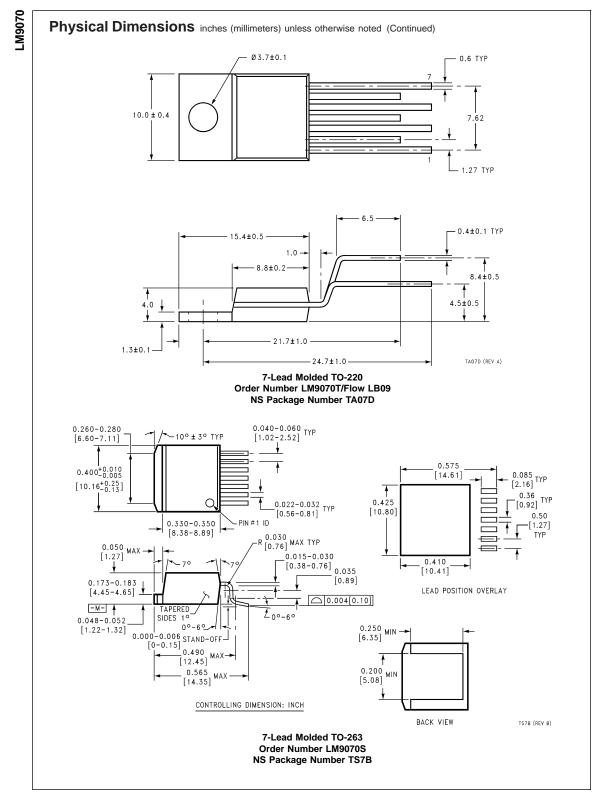
$$t_{delay} = \frac{3.8V \times Cdelay}{20 \ \mu A}$$

INPUT STABILITY


Low dropout voltage regulators which utilize a PNP power transistor usually exhibit a large increase in current when in dropout (V_{IN} < 5.5V). This increase is caused by the saturation characteristics (β reduction) of the PNP transistor. To significantly minimize this increase in current the LM9070 detects when the PNP enters saturation and reduces the operating current.


This reduction in input current can create a stability problem in applications with higher load current (> 100 mA) where the input voltage is applied through a long length of wire, which in effect adds a significant amount of inductance in series with the input. The drop in input current may create a positive input voltage transient which may take the PNP out of saturation. If the input voltage is held constant at the threshold where the PNP is going in and out of saturation, an oscillation may be created.


This is only observed where significant series inductance is present in the input supply line and when the rise and fall time of the input supply is very slow. If the application and removal of the input voltage changes at a rate greater than 500 mV/µs, the input voltage moves through the dropout region of operation (V_{IN} of 3V to 5.5V) too quickly for an oscillation to be established.


MICROPROCESSOR SYSTEM REGULATOR WITH KEEP-ALIVE INTERVAL AT TURN-OFF

The following circuit illustrates a system application utilizing both of the logic control inputs of the LM9070. Closing the ON/OFF switch powers ON the system. Once powered, the system controller sets the Keep-Alive line low. The NPN transistor is used only to signal the controller that the ON/OFF switch has been opened and the system is to be turned OFF. Upon detecting this high level at the ON/OFF Sense input line, the controller can then perform a power down routine. The system will remain fully powered until the controller commands total shut down by taking the Keep-Alive line high. The system then shuts OFF and reverts to a very low current drain standby condition until switched back on.

	Notes		
LIFE SUPPORT POLICY			
NATIONAL'S PRODUCTS DEVICES OR SYSTEMS V	ARE NOT AUTHORIZED FOR USI VITHOUT THE EXPRESS WRITTEN SEMICONDUCTOR CORPORATION	N APPROVAL OF THE PRESIDI	
systems which, (a) are in into the body, or (b) s whose failure to perfor accordance with instruct	ntended for surgical implant upport or sustain life, and m when properly used in ions for use provided in the ably expected to result in a	. A critical component is any support device or system who can be reasonably expected to the life support device or sys safety or effectiveness.	se failure to perform cause the failure of
National Semiconductor Corporation Americas Tef: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tei: +49 (0) 1 80-532 78 32 Français Tei: +49 (0) 1 80-532 78 32 Français Tei: +49 (0) 1 80-532 93 58 Ibuliano Tei: +49 (0) 1 80-532 45 80	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507
www.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

Nati