FAIRCHILD

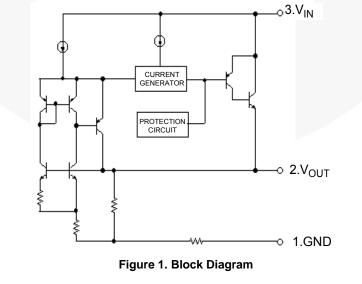

KA78RH33R Low Dropout Voltage Regulator

Features

- Fixed Output Voltage of +3.3 V
- Space-Saving SMD Types of DPAK
- 1 V (Typical) Dropout at I_O = 800 mA
- Output Current: 800 mA
- Thermal Shutdown Protection
- Over-Current Protection
- Output Trimmed to ±1% Tolerance
- No Minimum Load Requirement

Description

The KA78RH33 is a +3.3V, fixed, low dropout voltage regulator specifically designed for use in low-voltage operation. The maximum load current is 0.8 A and the dropout voltage is guaranteed to be 1 V (typical). The dropout voltage varies with load current. The regulator consists of composite PNP-NPN pass transistors.



Ordering Information

Part Number	Operating Tem- perature Range	Top Mark	Package	Packing Method
KA78RH33RTF	-25°C to +125°C	KA78RH33	TO-252 3L (DPAK)	Tape and Reel
KA78RH33RTM	-25°C to +125°C	KA78RH33	TO-252 3L (DPAK)	Tape and Reel

* Refer to above unit orientation figure for TM / TF suffix packing.

Block Diagram

June 2014

Absolute Maximum Ratings

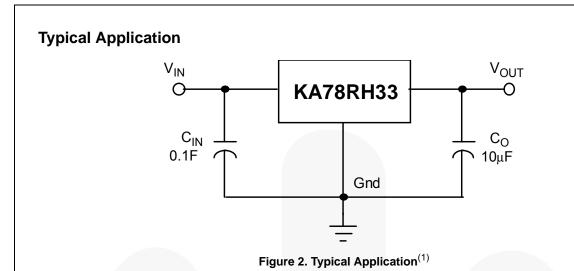
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{IN}	Power Supply Input Voltage	15	V
Ι _Ο	Output Load Current	800	mA
TJ	Junction Temperature	150	°C
T _{OPR}	Operating Junction Temperature	-25 to 125	°C
T _{STG}	Storage Temperature	-55 to 150	°C

Temperature Characteristics

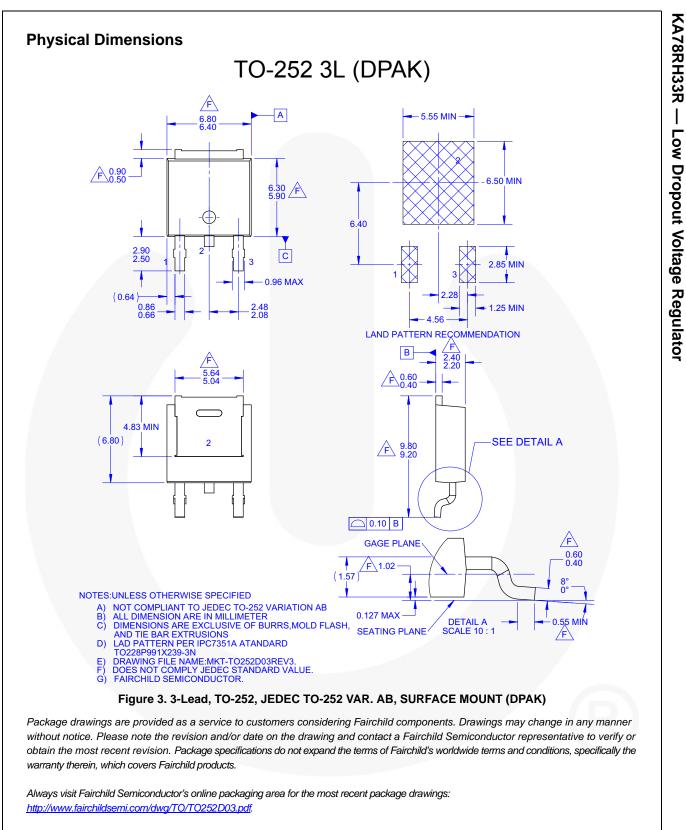
Symbol	Parameter	Value	Unit
$\Delta V_O / \Delta T$	Temperature Coefficient of Output Voltage	±0.02	%/ °C

Thermal Characteristics


Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	110	°C/W

Electrical Characteristics


Refer to the test circuit, values are at V_{IN} = 5 V, C_O = 10 μ F, and T_A = 25°C,unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	I _O = 10 mA, T _J = 25°C	3.27	3.30	3.33	V
V _{OUT}	Output Voltage	$V_{IN} = 4.8 V \text{ to } 12 V,$ $I_O = 10 \text{ mA to } 800 \text{ mA},$ $T_J = -25^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	3.23	3.30	3.37	v
R _{line}	Line Regulation	V_{IN} = 4.8 V to 12 V, I _O = 10 mA		1	10	mV
R _{load}	Load Regulation	I _O = 10 mA to 800 mA		1	20	mV
RR	Ripple Rejection	f = 120 Hz, I _O = 500 mA, V _{IN} = 6.3 ± 1 Vrms	55			dB
		I _O = 100 mA		1.00	1.20	
V _{drop}	Dropout Voltage	I _O = 500 mA		1.05	1.25	V
		I _O = 800 mA		1.10	1.40	
۱ _q	Quiescent Current	V _{IN} ≤ 12 V		5	10	mA
$\Delta V_{O} / \Delta T$	Temperature Coefficient of Output Voltage	$T_J = -25^{\circ}C$ to 125°C, $I_O = 10$ mA		0.2		mV/°C
I _{pk}	Peak Output Current	V _{IN} = 6.3 V	800			mA
V _n	Output Noise Voltage	f = 10 Hz to 10 kHz		100		μVrms

Note:

1. An input capacitor, C_{IN} is not necessary for stability, but improves the overall performance.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-T0252D03.pdf</u>.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP®, BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ ® F Fairchild®

Fairchild[∞] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FETBench[™] FPS[™] FRFET® Global Power Resource^{s™} GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

F-PFS™

PowerTrench[®] PowerXS^T Programmable Active Droop™ **OFET** QS™ Quiet Series™ RapidConfigure™ \bigcirc Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

TinyBuck[®] TinyCalc[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPWM[™] TinyWire[™]

TriFault Detect™

TinyBoost[®]

TRUECURRENT[®]* µSerDes™ SerDes[™]

TranSiC™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain
 life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 168