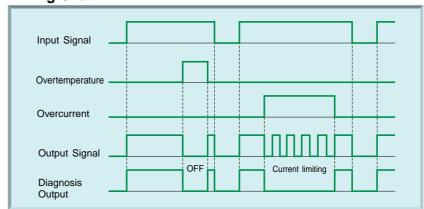
TPD1008SA

High-Side Power Switch for Motor, Solenoid and Lamp Drivers

TPD1008SA is a monolithic power IC for high-side switches. The IC has a vertical MOSFET output which can be directly driven from a CMOS or TTL logic circuit (e.g., an MPU). The device offers intelligent self-protection and diagnostic functions.


Features

- A monolithic power IC with a new structure combining a control block (Bi-CMOS) and a vertical power MOSFET $(\pi$ -MOS) on a single chip.
- One side of load can be grounded to a high-side switch.
- Čan directly drive a power load from a microprocessor.
- Built-in protection against thermal shutdown and load short circuiting.
- Incorporates a diagnosis function that allows diagnosis output to be read externally at load short circuiting, opening or overtemperature.
- Up to -10 V of counter electromotive force from an L load can be applied.
- Low ON-resistance: $RDS(ON) = 200 \text{ m}\Omega \text{ (max)}$
- Low operating current: IDD = 1 mA (typ.) $(@V_{DD} = 12 V, V_{IN} = 0 V)$
- 5-pin TO-220 new insulated package
- Three standard lead configurations

TO-220NIS 5PIN (LBS)

Timing Chart

Maximum Rating $(T_a = 25^{\circ}C)$

Characteristic		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	60	V	
Cupply Voltage	DC	V _{DD} (1)	25	V	
Supply Voltage	Pulse	V _{DD} (2)	60 (R _S = 1Ω , τ = 250 ms)		
Input Voltage DC		V _{IN} (1)	-0.5 to 12	V	
input voitage	Pulse	V _{IN} (2)	$V_{DD}(1) + 1.5 (t = 100 ms)$	V	
Diagnosis Output Voltage		VDIAG	-0.5 to 25	V	
Output Current		Io	Internally limited	Α	
Input Current		IIN	±10	mA	
Diagnosis Output Current		IDIAG	5	mA	
Power Dissipation	$T_C = 25^{\circ}C$	P _D (1)	30	W	
	$T_a = 25^{\circ}C$	25°C PD (2) 2		VV	
Operating Temperature		Topr	-40 to 110	°C	
Junction Temperature		Tj	150	°C	
Storage Temperature		T _{stg}	-55 to 150	°C	
Lead Temperature / Time		TSOL	275 (5 s), 260 (10 s)	°C	

Electrical Characteristics (T_j = -40 to 110°C, V_{DD} = 8 to 18 V)

Cha	racteristic	Symbol	Test Condition	Min	Тур.	Max	Unit	
Operating Supply Voltage		V _{DD(opr)}	_	5	12	18	V	
Supply Current	t	I _{DD}	V _{DD} = 12 V, V _{IN} = 0 V	_	1	5	mA	
Input Voltage		VIH	V _{DD} = 12 V, I _O = 2 A	3.5	_	_	· V	
		V _{IL}	$V_{DD} = 12 \text{ V}, \text{ IO} = 1.2 \text{ mA}$	_	_	1.5		
Input Current		I _{IN} (1)	V _{DD} = 12 V, V _{IN} = 5 V	_	50	200	- μΑ	
		I _{IN} (2)	V _{DD} = 12 V, V _{IN} = 0 V	-0.2	_	0.2		
On-Voltage		VDS(ON)		_	_	0.4	V	
On-Resistance		R _{DS(ON)}	$V_{DD} = 12 \text{ V, I}_{O} = 2 \text{ A, T}_{j} = 25^{\circ}\text{C}$	_	_	0.2	Ω	
Output Leakag	e Current	l _{OL}	V _{DD} = 18 V, V _{IN} = 0 V	_	_	1.2	mA	
Diagnosis Outpo	ut Voltage "L" Level	V_{DL}	$V_{DD} = 12 \text{ V}, I_{DL} = 2 \text{ mA}$	_	_	0.4	V	
Diagnosis Outpo	ut Current "H" Level	I _{DH}	V _{DD} = 18 V, V _{DH} = 18 V	_	_	10	μΑ	
Overcurrent Protection		I _S (1) (Note1)	V _{DD} = 12 V, T _j = 25°C	4	6	8	A	
		I _S (2) (Note2)		4	8	12		
Thermal	Temperature	T _S	_	150	160	200	°C	
Shutdown	Hysteresis	ΔTS	_	_	10	_		
Open Detection	n Resistance	Rops	V _{DD} = 8 V	1	20	100	kΩ	
Switching Time		ton	V _{DD} = 12 V, R _L = 5 Ω, T _j = 25°C	10	100	_	μs	
		t _{OFF}		10	30	_		

Note 1: Ig (1) Overcurrent detection value when load is short circuited and V_{IN} = "L" \rightarrow "H" Note 2: Ig (2) Overcurrent detection value when load current is increased while V_{IN} = "H"