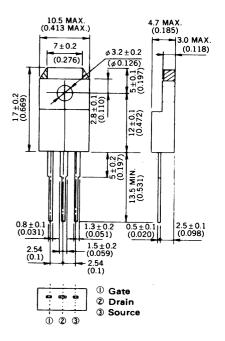
Notice: You cannot copy or search for text in this PDF file, because this PDF file is converted from the scanned image of printed materials.

P1 98.2

N-CHANNEL MOS FIELD EFFECT POWER TRANSISTOR

2SK1198

DESCRIPTION The 2SK1198 is N-channel MOS Field Effect Power Transistor designed for switching power supplies, AC Adapters.

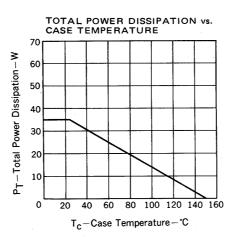

FEATURES • Suitable for switching power supplies, actuater controls, and pulse circuits.

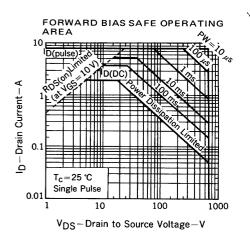
- Low R_{DS(on)}
- No second breakdown
- Isolated mold package

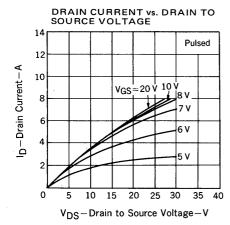
ABSOLUTE MAXIMUM RATINGS

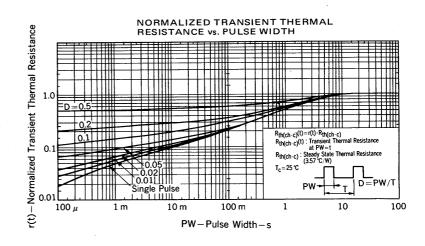
Maximum Temperatures	
Storage Temperature	С
Channel Temperature 150 °C Maximun	n
Maximum Power Dissipation ($T_c = 25$ °C)	
Total Power Dissipation	
Maximum Voltages and Currents (T _a = 25 °C)	
V _{DSS} Drain to Source Voltage 700 V	
V _{GSS} Gate to Source Voltage ±20 V	
I _{D(DC)} Drain Current (DC) ±2 A	
I _{D(pulse)} Drain Current (pulse)* ±8.0 A	
* PW \leq 10 μ s, Duty Cycle \leq 1 %	

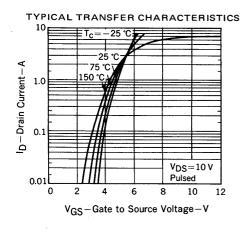
PACKAGE DIMENSIONS in millimeters (inches)

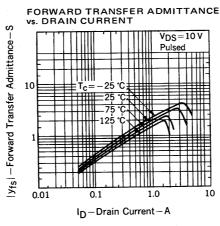

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

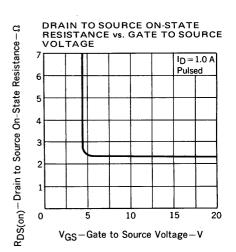

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
IDSS	Drain Leakage Current			100	μΑ	V _{DS} = 700 V, V _{GS} = 0
IGSS	Gate to Source Leakage Current			± 100	nΑ	V _{GS} = ±20 V V _{DS} = 0
V _{GS(off)}	Gate to Source Cutoff Voltage	1.5		3.5	V	V _{DS} = 10 V, I _D = 1 mA
yfs	Forward Transfer Admittance	1.0			s	V _{DS} = 10 V, I _D = 1 A
R _{DS} (on)	Drain to Source On-State Resistance		2.5	3.2	Ω	V _{GS} = 10 V, I _D = 1 A
Ciss	Input Capacitance		950		pF	
Coss	Output Capacitance		350		pF }	V_{DS} = 10 V, V_{GS} = 0, f = 1 MHz
C _{rss}	Reverse Transfer Capacitance		200		pF	
^t d(on)	Turn-On Delay Time		10		ns)	$I_D = 1 \text{ A, } V_{DD} = 150 \text{ V}$ $V_{GS(on)} = 10 \text{ V}$ $R_L = 150 \Omega$ $R_{in} = 10 \Omega$
t _r	Rise Time		10		ns	
^t d(off)	Turn-Off Delay Time		60		ns	
tf	Fall Time		20		ns	

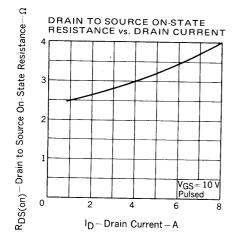


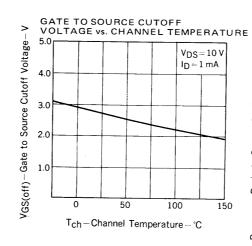

TYPICAL CHARACTERISTICS (Ta = 25 °C)

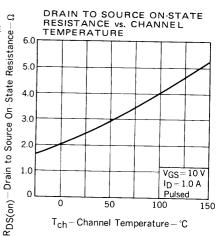


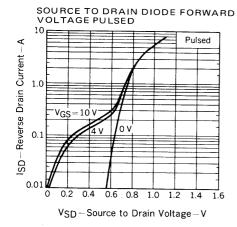


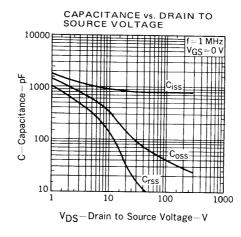


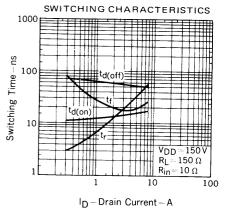


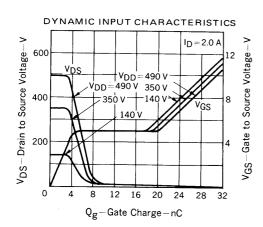


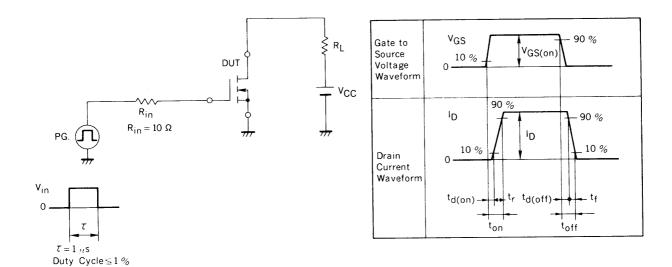


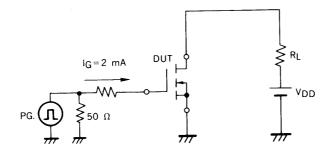












SWITCHING TIME TEST CIRCUIT 1

TEST CIRCUIT 2 GATE CHARGE

